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Abstract

This paper examines the conventional wisdom, expressed in McAfee and McMillan�s (1987)
widely cited survey paper on auctions, that links increased variance of bidder values to in-
creased information rent. We �nd that although the conventional wisdom does indeed hold in
their (1986) model of a linear contract auction, this relationship is an artifact of that particular
model and cannot be generalized. Using Samuelson�s (1987) model, which is similar but allows
for unobservable costs, we show that increased variance does not always imply increased infor-
mation rent. Finally, we give the appropriate measure of dispersion (di¤erent from variance)
that provides the link between the bidder value distribution and information rent.
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1 Introduction

The Revenue Equivalence Theorem states that the expected price paid in a standard auction equals

the expectation of the second-highest bidder value (or second-lowest bidder cost in a procurement)

whenever bidder beliefs are independent. Thus, ordering bidder values from highest to lowest, the

winning bidder�s expected surplus is the expected di¤erence between the highest and second-highest

order statistics (or second-lowest and lowest in a procurement). The winning bidder�s expected

surplus is often referred to as information rent because this surplus only accrues when bidders have

independent information about their values or costs. Because all of the models we consider in this

paper are within the independent private values paradigm, we de�ne information rent as follows.1

De�nition 1 In an independent private values (procurement) model where the bidder with the high-

est value (lowest cost) wins, the information rent earned by the winning bidder is:

IR =
��E �v(1) � v(2)���

where v(1) and v(2) are the �rst and second highest (lowest) of the bidders�values (costs).

A substantial amount of auction research has focused on tools that auctioneers can use to capture

part of the winning bidder�s information rent in an attempt to increase auction revenue; examples

include reserve prices and entry fees. Pertinent to this paper is the following conventional wisdom

o¤ered by McAfee and McMillan (1987) in their widely cited survey on auctions:

[A] determinant of the strength of the bidding competition is the variance of the distri-

bution of valuations. The larger is this variance, the larger on average is the di¤erence

between the highest and the second highest valuation, and so the larger is the economic

rent to the winning bidder.

Our paper shows that the relation between the variance of bidder values and information rent is not

always monotonic. There are quite ordinary settings in which a lower variance of the distribution

1Although there are formulas for information rent based on complicated envelope theorems and incentive compat-
ibility (see Milgrom, 2004 or Krishna, 2002), our focus on independent private values models allows information rent
to be expressed as in De�nition 1.
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of bidder values may, contrary to the conventional wisdom above, increase the winner�s information

rent. For instance, consider an example where two bidders draw their values from a power distrib-

ution function F
(v) = v
(parameterized by 
), with variance V ar
 =



(1+
)2(2+
) and information

rent IR
 =
2


(1+
)(1+2
) . Both V ar
 and IR
 are continuous and single-peaked, but obtain their

maxima at di¤erent values of 
. Speci�cally, V ar
 is maximized at 
 =
�p
5� 1

�
=2 while IR
 is

maximized at
p
2=2. These values are listed in Table 1 to show that decreased variance does not

necessarily lead to decreased information rent.

Table 1: IR=V AR example

 V ar
 IR
�p
5� 1

�
=2 � 0:61803 0:09017 0:34164

p
2=2 � 0:70711 0:08963 0:34315

1 0:08333 0:33333

More generally, the family of power distributions is a member of a larger class of distributions for

which lower variance does not imply lower information rent. Membership in this class requires that

the distributions cannot be ordered in dispersion, de�ned as follows.

De�nition 2 Let X and Y be random variables distributed by F and G, respectively. Then X is

smaller in dispersion than Y (X �disp Y or F �disp G) if

F�1(�)� F�1(�) � G�1(�)�G�1(�)

for all 0 < � � � � 1. A family of distributions F
 parameterized by 
 2 � � R can be ordered in

dispersion if F
1 �disp F
2 holds for all 
1 < 
2:

Intuitively, �disp is a measure of variability that requires the di¤erence between any two quantiles of

X to be smaller than the corresponding quantiles of Y . Landsberger and Meilijson (1994) have noted

that while this de�nition of dispersion is well known to statisticians, it has seen little application

in economics.2 Our paper provides one such application where a variety of statistical theorems are
2Chateauneuf, Cohen, and Meilijson (2004) show how order in dispersion can be used to measure risk in expected

utility models.

2



collected and applied to the relation between the variance of bidder values and information rent.

In a version of McAfee and McMillan�s (1986) principal-agents model, we show that information

rent, variance, and the dispersion of the reservation values all increase with the share s 2 [0; 1] of

costs borne by the principal. We then show that a parsimonious addition of unobservable costs,

as in Samuelson (1986, 1987), is enough to upset the ordering in dispersion of the reservation

values, thereby allowing counterexamples to the conventional wisdom. Thus, our paper clari�es

that dispersion� not variance� is the driving force between information rents and the distribution

of bidder values.

2 Linear Contract Auctions

A principal must choose one of n risk neutral agents to do a project. Doing the project costs agent

i (= 1; :::; n) his observable costs ci plus his unobservable costs di. For example, observable costs

might include materials and equipment rental and unobservable costs might include the opportunity

cost of forfeiting other work. We assume that ci and di are drawn from the C2 distribution functions

F (�) and G(�), with corresponding density functions f(�) and g(�) on supports [cL; cH ] and [dL; dH ].

We also assume that each agent�s type pair (ci; di) is drawn independently from the other agents�

types.3 We denote order statistics in the usual way: c(1) and c(2) are the lowest and second lowest

of the N agents�observable costs and other order statistics are de�ned similarly.

The principal holds a linear contract auction to select the agent who will do the project. In this

auction, the principal announces a sharing rate s 2 [0; 1] and then each agent i bids bi 2 R+. The

agent with the lowest bid wins the contract, does the project, and is paid by the principal a �xed

fee equal to his bid plus the share s of his observable costs: bi + sci: We emphasize that at the time

of the auction both ci and di are privately known to agent i; upon completion of the job only ci

becomes observable. When s = 0, the contract is termed �xed-price because the winning agent is

paid only his bid. When s = 1, the contract is termed cost-plus because the agent is paid all of his

costs plus his bid. When s 2 (0; 1) we have an incentive contract.4

3We allow for the possibility that ci and di are correlated for a given agent i.
4This type of auction is often used to procure highway construction. See Bajari, Houghton, and Tadelis (2006),

as well as the many references therein, for institutional details on road construction auctions and the uncertainties
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The winning agent�s pro�t from the auction is

�ijs = bi + sci � ci � di

= bi � vijs (1)

where

vijs = (1� s)ci + di (2)

We refer to vijs as agent i�s reservation value because it is a lower bound for the �xed payment the

agent must receive to do the project and, more importantly, because this value will play the same

role as a bidder�s private value in a standard� as opposed to a linear contract� auction. Since vijs

is a linear combination of two random variables, it is itself a random variable with some distribution

Hs(�) and density hs(�) on support [vLjs = (1� s) cL + dL; vHjs = (1� s) cH + dH ] that can be

computed using F (�) and G(�). In what follows, it will also be helpful to denote the distribution of

costs not covered by the principal, (1� s)c, as Fs(�).

Our model is equivalent to the model in Samuelson (1987). However, Samuelson emphasizes

the e¤ect that unobservable costs have on adverse selection while we are more interested in their

e¤ect on information rents. In one sense, our model simpli�es the model in McAfee and McMillan

(1986) because we omit risk aversion and moral hazard. Yet, our model also extends McAfee and

McMillan�s by including an idiosyncratic, unobservable cost component in the bidder types, which,

as Samuelson (1986, 1987) note, is a more realistic setting.5 We chose our version of the principal-

agents model for two reasons. First, including the unobservable, non-contractible costs allows us to

understand the relationship between the sharing parameter, variance, and information rents in as

parsimonious a linear contract auction model as possible. Second, by excluding risk aversion and

moral hazard, we are able to avoid the equilibrium analysis in McAfee and McMillan (1986) and use

the following version of the Revenue Equivalence Theorem.

inherent therein.
5McAfee and McMillan (1986) actually consider a second source of uncertainty in that the agent�s e¤ort cannot

be observed by the prinicpal. Nevertheless, in their model, the agent�s optimal e¤ort level is a deterministic function
of the sharing rate, so their only idiosynchratic element is the agent�s observable cost.
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Theorem 3 (Revenue Equivalence) Fix a particular sharing rate s 2 [0; 1]. Then for any auction

in which the agent with the lowest reservation value wins the auction and such that an agent with

value vHjs receives an expected payment of 0, the principal�s expected payment is:

� = E(v(2)js) + sE(cjv(1)js) (3)

= E
�
v(2)js � v(1)js

�
+ E(c+ djv(1)js) (4)

where v(1)js and v(2)js are the two lowest reservation values and E(cjv(1)js) and E(djv(1)js) are the

expected observable and unobservable costs of the agent with the lowest reservation value.

Proof. Consider a sealed-bid second-price auction where the agent who submits the lowest bid wins

the auction, does the project, and is paid the second-lowest bid plus the fraction s of his observable

cost c. As is usual with second-price auctions, it is a weakly dominant strategy for an agent to bid

his value vijs. This means that the bidder with the lowest reservation value v(1)js wins the auction,

gets paid the second-lowest bid v(2)js and is also reimbursed the fraction s of his observable cost.

This explains equation (3). Further, the Revenue Equivalence Theorem (Myerson, 1981) states that

any auction that awards the good to the lowest value v(1)js and such that an agent with highest

possible value vHjs has an expected payo¤ of 0 yields the same expected payment to the principal.

Adding and subtracting E(v(1)js) = E
�
(1� s) c+ djv(1)js

�
to equation (3) results in (4).

We emphasize that the value of s is �xed in the above theorem. For a �xed value of s, �rst-

and second-price auctions result in the principal making the same expected payment. For di¤erent

values of s, the principal�s expected payment can di¤er for two reasons. First, the agent who wins the

allocation can change, meaning that for two di¤erent values of s there may be two di¤erent agents

who win the auction. It is well known that revenue equivalence is only required to hold between

two auctions if both always result in the same winner (see page 66, Krishna, 2002). Second, when

the sharing rate s changes, the timing in the Revenue Equivalence Theorem changes. That is, some

of the payment made to the winning bidder is made after the auction, once some of the bidder�s

private information is no longer private. In contrast, the standard Revenue Equivalence Theorem

applies in the interim, when all of the bidder�s private information remains private and unveri�able.
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2.1 With Observable Costs Only

In this section, we assume that di = 0 (or more precisely, dL = dH = 0) so that the only source of

uncertainty is the agents�observable costs ci. This assumption enables us to replicate McAfee and

McMillan�s �bidding competition e¤ect,� though in a more transparent manner since we omit risk

aversion and moral hazard. In this special case where vijs = (1� s)ci, we have Hs(�) = Fs(�).

The �rst issue is how an increase in the sharing rate s a¤ects the variance of the distribution of the

reservation values and the information rents. Let V ar(vijs) denote the variance of the distribution

Hs(�) and V ar(ci) denote the variance of the distribution F (�). Since vijs = (1 � s)ci, we have

V ar(vijs) = (1 � s)2V ar(ci) and IRs = E
�
v(2)js � v(1)js

�
= (1 � s)E

�
c(2) � c(1)

�
. Clearly, both

V ar(vijs) and IRs are decreasing in the sharing rate s. The reason that variance and information

rent associated with di¤erent distributions of reservation values move in the same direction in this

restricted model is not because higher variance causes higher information rents. (Our example

in the introduction has already shown that cannot be true.) Rather, it is because the family of

distributions Fs(�) is ordered in dispersion by the sharing rate s, due to the following lemma.

Lemma 4 Let X be a random variable with a strictly increasing distribution F (�) on its support.

For every constant � 2 [0; 1], de�ne X� = �X . Then fX�g is ordered in dispersion by �.

Proof. Select any probabilities � and � such that � < �. For a given � 2 [0; 1], let F� denote the

distribution of X�. Since

� = prob
�
X � F�1(�)

	
= prob

�
�X � �F�1(�)

	
= prob

�
�X � F�1� (�)

	
it follows that F�1� (�) = �F�1(�). Similarly, F�1� (�) = �F�1(�). Thus, for �1 < �2 we have

F�1�1 (�)� F
�1
�1
(�) = �1

�
F�1(�)� F�1(�)

�
< �2

�
F�1(�)� F�1(�)

�
= F�1�2 (�)� F

�1
�2
(�)

showing that X� is ordered in dispersion by �.

This lemma shows that the reservation values vijs = (1 � s)ci are ordered in dispersion by

1 � s. That is, in the restricted model with only observable costs, the higher is s, the more costs

the principal covers, and the less dispersed the distribution of reservation values. The following

proposition relates the ordering in dispersion to variance and information rent.
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Proposition 5 Let X and Y be random variables distributed by F and G, respectively. Then if

X �disp Y , we have

1. var(X) � var(Y ), subject to existence, and

2. E[X(s)�X(r)] � E[Y(s)�Y(r)] for all 1 � r < s � n, where X(t) is the tth lowest order statistic

of n draws from F and Y(t) is tth lowest order statistic of n draws from G.

Proof. See page 78 of David and Nagaraja (2003).

Recall from De�nition 1 that E[X(2)�X(1)] and E[Y(2)�Y(1)] are simply the procurement auction

information rents obtained under the distributions F and G. Hence, although var(X) � var(Y )

does not imply IR(X) � IR(Y ), Proposition 5 says that rather, they both follow if X is smaller in

dispersion than Y . Alternatively, if X and Y cannot be ordered in dispersion, then var(X) < var(Y )

and IR(X) > IR(Y ) may coexist. Proposition 5 sheds light on our example from the introduction

where X � F (X) = X
p
2=2 and Y � G(Y ) = Y (

p
5�1)=2 as the family of power distributions

F
(v) = v

 cannot be ordered in dispersion by 
.6

Proposition 5 also sheds light on McAfee and McMillan�s (1986) �bidding competition e¤ect.�

Both the variance of reservation values and information rent necessarily decrease when the sharing

rate s increases in their model because bidders have reservation values vijs = (1 � s)ci that are

ordered in dispersion by 1 � s. The next section shows that this ordering in dispersion is a simple

artifact of their model and that the parsimonious inclusion of unobservable costs can negate the

ordering in dispersion of reservation values based on s. Thus, an increase in s does not guarantee a

reduction in both variance and information rent.

2.2 With Observable and Unobservable Costs

We now relax the assumption that dL = dH = 0 so that an agent�s reservation value includes

unobservable costs: vijs = (1 � s)ci + di. This parsimonious extension of the model presented in

the previous subsection is enough to show how the example from the introduction applies to linear

6To show that the family of power distribitions F
(v) = v
 cannot be ordered in dispersion, �rst choose 
1 and

2 such that 0 < 
1 < 
2 and then let X � F
1 and Y � F
2 . It su¢ ces to show that neither (i) �1=
1 � �1=
1 �
�1=
2 ��1=
2 and (ii) �1=
1 ��1=
1 � �1=
2 ��1=
2 holds for all percentiles � and � with � < �. But (i) does not
hold for � = 0 and � 2 (0; 1) and (ii) does not hold for � 2 (0; 1) and � = 1.
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contract auctions. That is, the addition of unobservable costs is enough to show that the sharing

rate does not always induce an ordering in dispersion on the reservation values.

One might think that if ci and di are drawn independently from one another that

vijs = (1 � s)ci + di would become more dispersed as s decreases. But even in the extreme case of

s = 0, where the variance of ci+di clearly exceeds the variance of di, it is not generally the case that

di is smaller in dispersion than ci+di. But from Proposition 5, it is the ordering in dispersion� not

the ordering of variance� that causes the ordering of information rent. The following proposition

shows when adding a random variable to each of two random variables that are ordered in dispersion

will preserve that order in dispersion.

Proposition 6 Let Z be a random variable (with a positive, twice di¤erentiable density function)

that is independent from X and Y , and let X �disp Y . Then X +Z �disp Y +Z if and only if the

density function of Z is log-concave:

Proof. See page 86 of Lewis and Thompson (1981).

Some distributions with log-concave densities are the normal, Weibull (with shape parameter

r � 1), gamma (with shape parameter r > 1), and the uniform. Distributions without log-concave

densities include the Pareto, Weibull (with shape parameter r < 1), gamma (with shape parameter

r < 1), reciprocal of gamma, and the Student�s t: Applied to our cost sharing model, Proposition 6

leads to the following useful corollary.

Corollary 7 If di is log-concave and independent of ci, then information rent is decreasing in s.

Proof. Take s1 < s2. Lemma 4 implies that (1 � s2)ci �disp (1 � s1)ci since 1 � s2 < 1 � s1.

Proposition 6 then implies that vijs2 �disp vijs1 , so that by Proposition 5, there are less information

rents with s2.

Corollary 7 tells us that if ci and di are independent, then the inclusion of unobservable costs can

negate the ordering in dispersion induced by McAfee and McMillan�s (1986) model, thus allowing

for counterexamples to their conventional wisdom. In fact, even more counterexamples are possible

if ci and di are correlated, which as Samuelson (1986, 1987) point out, is the far more likely scenario.
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An agent with lower observable cost is likely to also have a higher unobservable (opportunity) cost of

taking the project if that agent can also do other projects more cheaply than his rivals. Our example

from the introduction su¢ ces to show that increasing the sharing rate can actually increase the

information rent in the case of correlated observable and unobservable costs. Speci�cally, suppose

that F (ci) = c
p
2=2

i on [0; 1] and that di is distributed such that the convolution of ci and di is

distributed by H1(vij1) = v
(
p
5�1)=2

ij1 on [0; 1]. Then as we have shown in the introductory example,

var(ci) < var(vij1), but IRci > IRvij1 . That is, information rents are lower with s = 0 than with

s = 1, so that the principal pays lower information rents by letting the agents di¤er by the full

amount of their private costs.7

3 Conclusion

Our paper illustrates that dispersion is the driving force between information rents and the distrib-

ution of bidder values. Several empirical studies have found that bidder valuations are distributed

log-normally.8 This relates to our �ndings because log-normal distributions cannot be ordered in

dispersion unless they have identical variance parameters (see Lewis and Thompson, 1981). Thus,

it is possible that measures aimed at reducing that variance will not necessarily decrease the bid-

der information rent as previously believed. Our results also apply to the recent empirical auction

literature dealing with unobserved heterogeneity.9 Roberts (2008) and Krasnokutskaya (2004) em-

ploy Monte Carlo simulations to analyze the e¤ect of unobserved heterogeneity on the estimation

of information rent. Their simulations suggest that failing to account for unobserved heterogeneity

causes an upward bias in the estimation. Applying our results, if the distribution of bidders�private

values has a log-concave density, then ignoring unobserved heterogeneity will cause the researcher

to overestimate information rent.
7Similarly, Samuelson (1987) remarks that if each agents�observable and unobservable costs are perfectly negatively

correlated, the information rents may be reduced by reducing the sharing rate.
8See Baldwin et al. (1997) and Vuong et al. (1995).
9See Athey, Levin, and Seira (2004), Bajari and Ye (2003), Campo, Perrigne, and Vuong (2003), Decarolis (2008),

and Hong and Shum (2002).
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