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Abstract

Many environmental hazards have long-run health effects, but quasi-experimental

studies typically measure outcomes and treatment over short time periods. We develop

a new framework for quantifying the effect of air pollution exposure on life expectancy.

Using daily changes in wind direction as an instrument for air pollution, we first charac-

terize the dynamic mortality effects of short-run exposure. We then incorporate these

estimates into a demographic model to quantify the lifelong effects of a permanent re-

duction in air pollution exposure. Ninety percent of the survival benefits accrue after

the first fifty years of life.
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1 Introduction

Environmental hazards such as air pollution, extreme temperatures, and water pollution are

major contributors to human morbidity and mortality. For example, The Lancet Commission

on Pollution and Health estimates that air pollution caused 6.5 million premature deaths

in 2015, amounting to 12 percent of all deaths worldwide (Landrigan et al., 2018). Such

assessments typically rely on observational studies, which are susceptible to omitted variable

bias (Dominici, Greenstone and Sunstein, 2014). Quasi-experimental studies can address

this bias but typically measure health outcomes and treatment exposure over short time

periods, often less than one year. As a result, they may miss long-run effects that develop

over decades, as well as the distinct effects of chronic (prolonged) exposure—neither of which

is likely to be a simple extrapolation of short-run effects.

Overcoming these limitations is challenging because few datasets track individuals over

long time periods, quasi-experimental variation in chronic exposure is rare, and endogenous

responses such as relocation complicate the interpretation of estimates. However, under-

standing the lifelong health consequences of sustained changes in exposure is essential for

designing effective health and environmental policy.

This paper proposes a new approach for estimating long-run mortality effects. Our

method combines well-identified short-run estimates with an individual-level model of health

production that fits human survival curves well and accommodates a wide range of mortality

patterns (Lleras-Muney and Moreau, 2022). We calibrate the model using short-run empiri-

cal mortality estimates and use it to quantify counterfactual survival outcomes under acute

and chronic changes in exposure. The model demonstrates strong out-of-sample perfor-

mance: its predictions align closely with our empirical estimates across different age groups

and follow-up periods, and are consistent with three-year quasi-experimental estimates from

Anderson (2020).

We use our approach to estimate the short- and long-run mortality effects of air pollution

exposure in the United States. Our study focuses on sulfur dioxide (SO2), a major precursor
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of fine particulate matter (PM2.5) and the predominant pollutant measured in the decades

following the 1970 Clean Air Act. We assemble a new dataset that combines the universe

of publicly available death records from 1972 to 1988 with daily data on air pollution and

weather. We then investigate the causal effect of acute (1-day) air pollution exposure on

county-level mortality by instrumenting for observed changes in SO2 with changes in wind

direction. We estimate that a 1-unit (≈10 percent) increase in SO2 raises 1-day mortality by

0.08 deaths per million (0.33 percent). Secondary analyses indicate that this effect reflects

exposure to both SO2 as well as PM2.5. When we extend the outcome window to one month

(28 days), the cumulative mortality effect more than triples, demonstrating that air pollution

continues to affect mortality well beyond the day of exposure.

We document striking differences in mortality dynamics by cause of death. Our 1-day

mortality estimate is driven roughly equally by deaths related to three groups of causes:

cardiovascular disease, cancer, and “other diseases,” a residual category that includes chronic

lower respiratory illness and diabetes. When the outcome window is extended to one month,

cumulative mortality from cardiovascular and other diseases increases more than fourfold.

This finding aligns with evidence from the medical literature suggesting that air pollution

causes “accelerated aging” by, for example, hardening arteries and increasing the risk of

heart disease (Rajagopalan and Landrigan, 2021). By contrast, the estimated mortality from

cancer declines and becomes statistically insignificant over the longer window. Given the

implausibility of developing and dying from cancer in under a month, this pattern suggests

that these cancer deaths largely reflect “mortality displacement”—that is, they occurred

among frail individuals with pre-existing cancer and short counterfactual life expectancies.

Altogether, our empirical estimates indicate that acute exposure to air pollution produces

two distinct mortality patterns: a short-term, transient effect due to mortality displacement

among frail individuals, and a longer-term, growing effect due to accelerated aging among

healthier individuals. On net, the accelerated aging effect dominates.

Medical and epidemiological research suggests that long-run exposure to air pollution
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also triggers adverse health processes, such as artery hardening, that gradually impair health

over many years. To translate our acute estimates into lifetime projections, we adapt the

health production model of Lleras-Muney and Moreau (2022) to our daily mortality setting.

While there are many ways to model survival, this model is particularly well-suited to our

needs because it can capture both the accelerated aging and mortality displacement patterns

observed in our setting.

Our approach maps our short-run empirical estimates to the model’s parameters, allowing

us to form long-run projections that align with well-documented age patterns of human

mortality. Specifically, we use age-specific estimates of 1-day cancer mortality to calibrate

the effect of pollution exposure on the model parameter governing mortality displacement,

and use the corresponding non-cancer estimates to calibrate the effect of exposure on the

model’s biological aging parameter. We then use this calibrated model to quantify the short-

and long-run effects of both acute and chronic exposure.

We validate the model internally in several ways. Because it is calibrated using only

1-day mortality estimates, we can measure the model’s accuracy by comparing its mortality

predictions in the months following acute exposure to our corresponding empirical estimates.

We also assess the plausibility of a key modeling assumption—that the effect of a given

exposure on model parameters is constant—by checking whether parameters calibrated using

one age group predict mortality effects in other age groups. For example, we calibrate a

model using IV mortality estimates for ages 70 and over and then assess how well it predicts

mortality effects for 65–69-year-olds, a younger age group with a different exposure history.

Finally, we benchmark the model against IV mortality estimates of short-term (up to 90-day)

chronic pollution exposure.

The model performs well: the vast majority of predictions lie inside the 95% confidence

intervals of the corresponding IV estimates. These predictions depend meaningfully on our

estimated share of deaths due to mortality displacement. When we assume either 0% or 100%

mortality displacement, the resulting predictions fall far outside the 95% confidence intervals.
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These results demonstrate that while all-cause mortality estimates alone are insufficient

for forming reliable long-run predictions, incorporating cause-of-death information into a

structural model can overcome this challenge.

Finally, we use our model to quantify the effect of a permanent, 1-unit decrease in SO2—

and, by implication, associated reductions in PM2.5—on life expectancy. The model predicts

that, holding behavior fixed, this reduction would extend life expectancy at birth by 1.1

years (90% bootstrap CI: 0.4–2.0). Alternative model specifications yield similar projections,

spanning 0.77–1.24 years. All of these projections substantially exceed the 0.15-year gain

implied by a simple extrapolation of our one-month IV estimates. Although the modeled

decrease in chronic exposure begins at birth, ninety percent of the improvements in life

expectancy occur after age 50, and over three-quarters occur after age 65. This result

suggests that most of the survival benefits from the dramatic reductions in US air pollution

since the 1970 Clean Air Act have yet to materialize for cohorts born in subsequent years.

The main contribution of our study is the development and application of a new frame-

work for estimating the long-run mortality effects of chronic exposure to environmental haz-

ards. The conventional approach estimates the short-run mortality effects of acute exposure

and then quantifies long-run mortality effects using population life tables (e.g., Deschênes and

Greenstone, 2011), with more recent work improving accuracy by incorporating individual-

level predictions of counterfactual life expectancy (Deryugina et al., 2019). However, these

methods remain prone to bias from unobserved characteristics that are correlated with both

life expectancy and the probability of dying from exposure, and they cannot quantify the

effects of chronic exposure. Our approach, by contrast, uses a health production model to in-

fer long-run mortality effects from short-run quasi-experimental estimates, providing a novel

example of a “best of both worlds” approach that combines structural and experimental

methods (Allcott, Gentzkow and Song, 2022; Todd and Wolpin, 2023; Obradovi, 2024). By

incorporating established features of human life-cycle mortality, the model is better equipped

to produce reliable projections than approaches that ignore this information.
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Our approach complements ongoing efforts to directly estimate the long-run mortality

effects of pollution—an important but difficult task. Direct estimation requires identifying

quasi-experimental variation in exposure that lasts for many years and carefully accounting

for long-run avoidance behaviors (Graff Zivin and Neidell, 2012; Currie et al., 2014). Because

such settings are rare, only a handful of studies have produced credible multi-year mortality

estimates (Chen et al., 2013; Ebenstein et al., 2017; Anderson, 2020; Barreca, Neidell and

Sanders, 2021; Andersen et al., 2023), and even these struggle to rule out selective migration.1

By leveraging quasi-experimental variation in daily exposure, our approach avoids many

of the potential confounders that complicate long-run designs. In addition, our findings

suggest that pollution’s health effects build up gradually over decades, implying that even

well-designed multi-year studies are likely to understate its full lifetime mortality burden.

Our short-run analysis also advances the literature on the health effects of acute expo-

sure to air pollution. To our knowledge, this paper is the largest quasi-experimental study

of acute pollution exposure and mortality to date, encompassing 18 million deaths and en-

abling precise age-specific mortality estimates. Our results underscore the importance of

distinguishing mortality displacement among frail individuals, where the cumulative mor-

tality effect dissipates, from accelerated aging among healthier individuals, where effects

accumulate. Recognizing this distinction is essential for accurately inferring long-run mor-

tality effects from short-run estimates. Although lengthening the outcome window helps

address this challenge, the vast majority of quasi-experimental studies of air pollution rely

on short outcome windows of one year or less.2

1For example, Barreca, Neidell and Sanders (2021) use repeated cross-sectional data to rule out large
changes in total county-level population following pollution reductions, but differential migration remains a
potential concern. Experimental animal studies also offer limited guidance, as most focus on simple organisms
such as C. elegans or Drosophila. To our knowledge, no laboratory experiment has estimated the survival
effects of chronic pollution exposure in more complex species such as mice or primates.

2See, for example, Currie and Neidell (2005); Knittel, Miller and Sanders (2016); Schlenker and Walker
(2016); Deschênes, Greenstone and Shapiro (2017); Deryugina et al. (2019); Hollingsworth, Konisky and
Zirogiannis (2021); Hollingsworth and Rudik (2021); and Heo, Ito and Kotamarthi (2023). A smaller litera-
ture studies early-life exposure and later-life outcomes (e.g., Isen, Rossin-Slater and Walker, 2017; Voorheis,
2017; Colmer and Voorheis, 2020), including one study on mortality before age 55 (Arenberg and Neller,
2023), but none focus on chronic exposure.
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The rest of the paper is organized as follows. Section 2 provides background on air

pollution and describes our data. Section 3 describes our instrumental variables design.

Section 4 presents estimates of the short-run mortality effects of acute exposure. Section 5

introduces the health production model, calibrates it, and quantifies the long-run survival

effects of chronic exposure. Section 6 concludes.

2 Background and data

2.1 Air pollution

Sulfur dioxide (SO2) is a major air pollutant produced primarily by the combustion of coal

and oil. Historically, coal-burning power plans were the main source of SO2 emissions in

the US. Ambient concentrations of SO2 declined significantly during our sample period and

have continued to fall in more recent years (Figure A.1a), driven by a shift to low-sulfur

coal, increased use of pollution control equipment, and greater reliance on alternative energy

sources such as natural gas.

SO2 harms human health through two main channels. First, clinical trials have shown

that direct exposure to SO2 impairs respiratory function, especially among people with

asthma (Agency for Toxic Substances and Disease Registry, 1998). Animal experiments

have also demonstrated that SO2 inhalation can cause brain damage (Sang et al., 2010; Yao

et al., 2015) and contribute to cardiac and mitochondrial dysfunction (Qin et al., 2016).

Second, SO2 transforms naturally into sulfate (SO2−
4 ) at a rate of several percent per hour

(Luria et al., 2001). Sulfates are a major component of fine particulate matter (PM2.5),

a catch-all term for particles whose diameter is 2.5 micrometers (µm) or less. PM2.5 is

thought to be particularly harmful to health because of its ability to cross the blood-alveolar

and blood-brain barriers. Prior quasi-experimental research has found causal links between

short-run exposure to PM2.5 and a number of health-related outcomes, such as short-run

healthcare spending, hospitalizations, and mortality (e.g., Barwick et al., 2018; Deryugina
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et al., 2019; Heo, Ito and Kotamarthi, 2023).

While research on the exact pathophysiological mechanisms underlying these health ef-

fects continues, medical studies have documented significant associations between air pollu-

tion and hypertension, diabetes, coronary artery calcification, and the progression of chronic

kidney disease, all of which are risk factors for cardiovascular disease (Rajagopalan and Lan-

drigan, 2021). Air pollution exposure has also been linked to the initiation, promotion, and

progression phases of lung cancer (Turner et al., 2020; Hill et al., 2023). Once initiated, lung

cancer typically grows for over 10 years before it is diagnosed (Nadler and Zurbenko, 2014).

Thus, the short-run health effects of air pollution exposure—including mortality—cannot be

easily extrapolated to capture its long-run effects.

We measure air pollution using the EPA’s Air Quality System database, which provides

hourly data at the pollution-monitor level for criteria pollutants regulated by the EPA. The

extent of spatial and temporal coverage varies by pollutant (see Section A.1 for additional

detail). Although our analysis focuses on SO2, we also examine four other air pollutants that

have been monitored since the 1970s or the 1980s: nitrogen dioxide (NO2), total suspended

particulates (TSP), ozone (O3), and carbon monoxide (CO). TSP includes all particulates

with diameters less than 100 µm, encompassing the finer PM2.5, which was not consistently

monitored until the late 1990s—well after our sample period. Because SO2 is a precursor to

PM2.5, ambient SO2 levels are likely correlated with unobserved fine particulate matter. We

discuss the implications of this relationship for interpreting our estimates in Section 4.2.

Panel A of Table 1 shows county-level summary statistics for daily ambient pollution

concentrations during our 1972–1988 sample period. The average SO2 concentration is 9.1

parts per billion (ppb), with a standard deviation of 12.7. Thus, a one-ppb change in SO2

represents slightly more than 10 percent of the mean and slightly less than 10 percent of a

standard deviation. During this sample period, SO2 is observed more than twice as frequently

as any of the other four pollutants.
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2.2 Mortality

We obtain daily death counts from the National Vital Statistics. These data are based

on death certificate records and include information on both the cause of death and the

county in which the death occurred. Our analysis focuses on the years 1972–1988, the only

period for which the exact date of death is publicly available.3 To calculate death rates,

we divide death counts by annual county-level population estimates from the Surveillance,

Epidemiology, and End Results (SEER) Program.

Panel B of Table 1 summarizes daily mortality rates during our 1972–1988 time period.

The overall death rate is about 24 per million. Mortality is higher among infants (33 deaths

per million), and much higher among those over age 85 (437 deaths per million).4 We

classify causes of death into four main categories: cardiovascular, cancer, external, and other.

Cardiovascular disease is the leading cause of death in our sample, accounting for nearly half

of all deaths (12 deaths per million). Cancer accounts for just over twenty percent (5 deaths

per million), while external causes—which include car accidents, poisonings, suicides, and

other causes not originating in the body—represent about eight percent. The remaining

twenty percent, which includes deaths from respiratory illness, are grouped into an “other”

category. We report estimates for subcategories of cardiovascular and other disease deaths

in secondary analyses.

2.3 Wind and weather

Our empirical strategy builds on the well-established fact that wind currents carry air pol-

lution over long distances. For example, regional contributions to sulfate pollution substan-

tially exceed local contributions in many US cities (Environmental Protection Agency, 2004).

Following the approach of Deryugina et al. (2019), we instrument for changes in SO2 using

3The exact date of death is unavailable prior to 1972, and is only accessible after 1988 through the
Research Data Center of the National Center of Health Statistics.

4Figure A.2 reports annual death rates by age group and cause of death during our sample period.
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changes in wind direction.5

To construct our wind measures, we use hourly data on wind speed and wind direction

from the ERA5 reanalysis dataset, published by the European Centre for Medium-Range

Weather Forecasts. The data provide wind vectors measured at 10 meters above the Earth’s

surface, with separate variables for east-west (u-component) and north-south (v-component),

measured on a 0.25-by-0.25 degree grid (approximately 17-by-17 miles).6 We interpolate

these hourly wind vector components to the centroid of each county and compute daily

averages to match the frequency of our mortality data. Finally, we convert the averaged u-

and v-components into daily measures of wind direction and wind speed using trigonometry.

Our key identifying assumption is that, conditional on weather controls and a rich set of

fixed effects, wind direction affects mortality only through its effects on air pollution. Our

main specification controls for daily temperature and precipitation using data from Schlenker

and Roberts (2009), who combine monthly data from the PRISM Climate Group with daily

weather station observations to produce a gridded daily dataset. The data include daily total

precipitation and daily maximum and minimum temperatures at a 2.5-by-2.5 mile resolution

across the contiguous US for 1972–1988. We aggregate to the county-day level by calculating

a population-weighted daily average across grid points within each county.7

We also incorporate relative humidity measures from the NCEP-NCAR Reanalysis 1 data

provided by the NOAA PSL (Kalnay et al., 1996). This dataset combines historical weather

observations with a global atmospheric model to produce daily estimates dating back to

1948. We use daily mean relative humidity reported at standard pressure levels, averaged

from four sub-daily observations. These data are gridded at a 2.5-by-2.5 degree resolution.

5Deryugina et al. (2019) estimate the effects of PM2.5 on 3-day mortality and medical spending among
the elderly Medicare population. Our empirical analysis, which includes all ages and a longer sample period,
focuses on mortality dynamics by age and cause of death. These dynamics help characterize the incidence
of short-run pollution exposure and are crucial to forming the long-run projections presented in Section 5.

6These data are available from https://cds.climate.copernicus.eu/datasets/

reanalysis-era5-single-levels?tab=overview.
7See http://www.prism.oregonstate.edu/ for the original PRISM dataset and https://zenodo.org/

records/10625288 for the daily data. Because the 1970 and 1980 Census tract boundary data are incom-
plete, we assign population weights using 1990 Census tract boundaries.

9

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
http://www.prism.oregonstate.edu/
https://zenodo.org/records/10625288
https://zenodo.org/records/10625288


We interpolate to each county’s geographic centroid to obtain county-level measures.

3 Empirical strategy

3.1 Estimating equations

Our first objective is to estimate the causal effect of acute (1-day) air pollution exposure on

short-run mortality. We model this relationship using the following regression:

Y k
cd = βkSO2cd +Xk

cd

′
δ + αcm + αmy + εcd (1)

where Y k
cd denotes the cumulative mortality rate in county c in the k days following exposure

on day d (including same-day mortality). The parameter of interest, βk, captures the effect

of acute SO2 exposure on k-day mortality. To isolate this effect, the controls Xk
cd include

contemporaneous weather conditions and their k − 1 leads, a well as two leads and two

lags of our wind direction instrument (described below). These controls help ensure that

our estimate of βk is not confounded by weather conditions during the mortality outcome

window or by SO2 exposure occurring before or after the focal day.

Equation (1) includes fixed effects for county-by-calendar-month (αcm) and calendar-

month-by-year (αmy), hereafter referred to as “county-by-month” and “month-by-year”. The

county-by-month fixed effects allow geographic differences in mortality, air pollution, and

wind patterns to vary by month. The month-by-year fixed effects control for common time-

varying shocks, such as those induced by environmental policy changes during our study

period. We cluster standard errors at the county level and weight observations by the

relevant county-year population.

Our main specification controls for daily maximum temperature, relative humidity, pre-

cipitation, and wind speed. Maximum temperature is modeled using indicators for 3-degree

Celsius bins. The interior bins range from –15 ◦C to –12 ◦C up to 27 ◦C to 30 ◦C, with
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two additional bins capturing temperatures below –15 ◦C and above 30 ◦C. Relative hu-

midity (measured in percent) is binned into five intervals: [0,10), [10,30), [30,60), [60,90),

and [90,100]. Precipitation (measured in millimeters) is binned into seven intervals: [0,0.1],

(0.1,1], (1,10], (10,20], (20,50], (50,100], and (100, ∞). Wind speed (measured in miles per

hour) is binned into eight intervals based on the Beaufort scale: [0,1), [1,4), [4,8), [8,13),

[13,19), [19,25), [25,32), and [32, ∞).8 To account for potentially important interactions be-

tween weather conditions, we include indicators for all observed combinations of maximum

temperature, precipitation, wind speed, and relative humidity bins, yielding 2,373 distinct

weather condition indicators. To assess robustness, we also report results from specifications

that use different sets of weather controls.

OLS estimates of Equation (1) may be biased because SO2 exposure is both non-random

and measured with error, as monitor-level pollution readings are an imperfect measure of

population exposure. To address these concerns, we instrument for daily SO2 using contem-

poraneous wind direction in the county, allowing the effect of wind direction on SO2 to vary

by geographic group g:

SO2cd =
50∑
g=1

f g(θcd) +Xk
cd

′
δ + αcm + αmy + εcd (2)

where:

f g(θcd) = γ1
g1[Gc = g]× sin (θcd) + γ2

g1[Gc = g]× sin (θcd/2)

The indicator function 1[Gc = g] is equal to 1 if county c is a member of group g and 0

otherwise. The variable θcd is the local wind direction, measured in radians. The excluded

instruments consist of 100 regressors formed by the interaction of group indicators, 1[Gc = g],

with measures of contemporaneous wind direction, sin (θcd) and sin (θcd/2). Section A.2

shows that our results are robust to alternative ways of parameterizing f g(θcd).

8These choices aim to strike a balance between computational considerations and capturing weather con-
ditions that could both affect mortality and be correlated with wind direction. See https://www.weather.

gov/mfl/beaufort for additional detail on the Beaufort scale.
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The wind direction instruments vary at the county level. We allow their effects on

pollution exposure to differ across geographic groups—as captured by the parameters γ1
g

and γ2
g—because the relationship between wind direction and pollution transport is location-

specific. For example, a westerly wind may reduce pollution levels in coastal California while

increasing it in areas located to the east of industrial sources near Chicago. To capture this

heterogeneity, we construct 50 geographic groups using a k-means clustering algorithm that

assigns all SO2 pollution monitors to spatial groups based on their latitude and longitude.9

To address autocorrelation in wind direction—which could bias our estimate of βk, the

effect of a one-day, one-unit change in SO2 exposure—we include two leads and two lags

of wind direction, each interacted with geographic indicators, as part of our controls, Xk
cd.

Thus, contemporaneous wind direction serves as our excluded instrument, while past and

future wind directions serve as controls. Section A.2 demonstrates that including these leads

and lags successfully addresses autocorrelation in wind-driven SO2 exposure.

3.2 Identifying variation

Ambient air pollution comes from both local and distant sources. For example, a city’s

pollution levels reflect not only nearby vehicle exhaust but also smoke from distant wildfires

and emissions transported from power plants hundreds of miles away. The location of the

source matters: while distant emissions tend to disperse relatively evenly over large areas,

local emissions can create sharp spatial gradients in exposure that depend on wind patterns

and proximity to the source. These local gradients can introduce serious measurement error

when estimating county-level effects.10 To address this concern, our first-stage Equation (2)

9The k-means clustering algorithm uses monitor coordinates and the desired number of groups (50) as
inputs. If multiple monitors from the same county are assigned to different groups, we assign the county to
the larger integer group number, which is effectively random assignment. Figure A.3 displays the locations of
in-sample SO2 monitors and their assigned geographic groups. On average, each geographic group includes
95 SO2 monitors and 21 counties.

10Consider a county with one air pollution monitor located west of a centrally positioned power plant—the
only pollution source in the area. When the wind blows from the east, the monitor detects high pollution;
when it blows from the west, it detects low levels. Yet in this example, average county exposure does not
change; variation in monitor readings reflects measurement error rather than true variation in countywide
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allows the effect of (county-level) wind direction on pollution to vary across geographic groups

but constrains it to be constant within each group. This approach emphasizes wind-driven

variation from distant sources, which are more likely to affect entire counties uniformly,

thereby reducing measurement error in our estimation.

Figure 1 illustrates our first-stage variation, using the Greater Philadelphia and Southern

California geographic groups as examples. In the maps on the left, black dots indicate

the locations of the SO2 monitors within each region. The plots on the right show the

group-specific relationships between daily average wind direction and SO2 concentrations.11

Each regression includes our standard controls: county-by-month and month-by-year fixed

effects, along with indicators for all observed combinations of maximum temperature, relative

humidity, precipitation, and wind speed bins. To flexibly capture the relationship between

wind and SO2, we discretize wind direction into 36 10-degree bins and estimate the first-stage

equation separately by geographic group. For comparison, we also overlay the fit implied by

our sine-function parameterization.

Figure 1 reveals a strong first-stage relationship between wind direction and SO2 levels.

In the Greater Philadelphia area, pollution levels are highest when the wind blows from the

west-southwest direction, and lowest when the wind blows from the east-southeast direction,

where the Atlantic Ocean lies. By contrast, in the Southern California area, the highest

pollution levels occur when the wind blows from the east, a densely populated area, while

the cleanest air comes from the south-southwest direction, where the Pacific Ocean lies. A

change in wind direction in these areas can alter SO2 levels by 3–4 ppb, equal to 30–40

percent of the national mean during this time period (Table 1).

We estimate our second stage using two-stage least squares (2SLS) and interpret the

resulting IV estimate as a weighted average of treatment effects among compliers, where

weights are larger for compliers with larger first stages (Angrist, Graddy and Imbens, 2000).

Figure A.5 shows the geographic distribution of the strength of the first stage, as measured

exposure.
11Figure A.4 shows corresponding plots for all 50 geographic groups.
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by the difference in predicted SO2 levels between the most and least polluting wind direc-

tions.12 The strongest compliers—regions with over 4 ppb of predicted SO2 variation—are

concentrated in the Midwest and the Northeast. Moderate (1–4 ppb) and weak (<1 ppb)

compliers are more geographically dispersed. Appendix Section A.2 presents an analysis of

complier characteristics and discusses the monotonicity assumption.

Our empirical approach permits us to instrument for multiple pollutants simultaneously

because they originate from different sets of sources and are carried differently by the wind.13

In a later analysis, we investigate the sensitivity of our main estimate to controlling for the

four other pollutants measured during our study period: NO2, CO, O3, and TSP. However,

because these pollutants are monitored far less frequently than SO2, including them reduces

our sample size by over 90 percent. We therefore focus on SO2 in our main analysis and

treat the multi-pollutant estimates as a robustness check.

4 Short-run empirical results

4.1 Mortality by age and cause

We begin by estimating the effect of daily air pollution exposure on same-day mortality. Ta-

ble 2 presents OLS and IV estimates of Equation (1). Column (1) reports that a 1-day, 1-ppb

increase in SO2 is associated with a same-day mortality increase of 0.008 deaths per million,

nearly ten times smaller than the corresponding IV estimate of 0.07 deaths per million re-

ported in Column (2). This downward bias in the OLS estimate is consistent with findings

from other quasi-experimental studies of air pollution and is commonly attributed, at least

in part, to measurement error in pollution exposure (Deryugina et al., 2019; Alexander and

12For each geographic group g, we calculate γ̂1g sin (θ) + γ̂2g sin (θ/2) for θ ∈ [0, 2π) and take the difference
between the maximum and minimum values.

13For example, manufacturing plants emit significant amounts of particulate matter, but not SO2, while
coal power plants emit both.
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Schwandt, 2022). Our first-stage F -statistic exceeds 600, indicating a strong instrument.14

Our key identifying assumption is that changes in wind direction affect mortality only

through their effects on pollution levels. This assumption would be violated if wind direction

were correlated with unobserved weather patterns that independently influence mortality.

While impossible to test directly, we assess the plausibility of the assumption by examining

the sensitivity of our estimates to alternative ways of controlling for weather conditions,

as shown in Columns (3)–(6) of Table 2. Column (3) presents results from a specification

that omits all weather controls. Column (4) adds controls for minimum temperature—

defined using the same bins as those for maximum temperature—along with all of its possible

interactions with other weather controls. In Column (5), we coarsen the interior temperature

bins to span 6 ◦C instead of 3 ◦C, and redefine extreme bins to include temperatures below

–9 ◦C and above 27 ◦C. Finally, Column (6) replaces temperature and precipitation bins based

on county-day averages with bins based on the underlying 2.5-by-2.5-mile grid cells.15 Our

estimate remains stable across all specifications, supporting the validity of the identifying

assumption.

Figure 2 presents IV estimates of the effects of a 1-day, 1-ppb increase in SO2 levels

on cumulative mortality up to one month following exposure. The blue point at day 0

corresponds to the estimate of 0.07 deaths per million from Column (2) of Table 2. If short-

term mortality displacement were the predominant driver of this 1-day mortality effect, the

cumulative effect would decline over time, potentially all the way to zero. Instead, the

estimated effect increases steadily, reaching 0.17 deaths per million after one week and 0.25

deaths per million after one month, implying that acute air pollution exposure continues to

14The F -statistic is computed assuming errors are homoskedastic, which means it can be compared to
the well-known critical values published in Stock and Yogo (2005). Heteroskedasticity-robust F -statistics
also lie well above conventional thresholds. The weak-instrument test of Olea and Pflueger (2013) is not
computationally feasible in our setting.

15To construct this alternative set of weather variables, we first assign each grid cell to a temperature
and precipitation bin, then aggregate to the county level by taking the the maximum and minimum bin
values observed across the county’s grid cells. We avoid averaging bin indicators across grid cells, as this
would produce too many distinct values and make it computationally infeasible to include fixed effects for
all observed weather conditions.
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have lethal effects even after exposure has ended. Figure A.6 extends the analysis to 90 days

following exposure. The estimated effect continues to rise slightly, eventually exceeding 0.3

deaths deaths per million. However, as the outcome window lengthens, the standard errors

increase substantially, limiting statistical precision.

As a falsification test, Figure 2 also reports estimates for the effect of exposure on cu-

mulative mortality during the two weeks prior to exposure. These pre-period estimates are

small and largely statistically insignificant, supporting the validity of our empirical strategy.

Figure 3 disaggregates the mortality effects by cause of death. As in the aggregate re-

sults, the pre-period estimates are small and centered around zero. The sharp increase in

1-day total mortality is driven by roughly equal contributions from cardiovascular disease,

cancer, and other diseases. Over longer time horizons, however, the cancer estimate de-

clines, consistent with short-run mortality displacement. Indeed, we cannot reject the null

hypothesis that these deaths would have occurred within one month even in the absence of

exposure. By contrast, mortality from cardiovascular and other diseases continues to rise

with the length of the outcome window, more than quadrupling over the month. Estimated

effects for external causes remain consistently small and largely insignificant across all time

windows.

Figure 4 shows how the 1-day mortality effect varies by age group.16 Panel (a) presents

the absolute effect (in deaths per million), while Panel (b) expresses the effect as a percentage

of the age group’s average 1-day mortality. We fail to detect significant mortality increases

for the two youngest age groups (covering ages 0–19). For older age groups, effects range

from 0.0087 deaths per million for ages 20–44 to 1.9 deaths per million for those over age 85

(Figure 4a). However, these differences are much smaller when expressed in relative terms:

the effect represents 0.2 percent of daily mortality for ages 20–44, compared to 0.44 percent

for those over age 85. For most age groups, we cannot reject the null of equal relative effects.

Our estimates for older age groups are similar in magnitude to those reported in Deryug-

16See Appendix Section A.2 for age-specific estimates up to 28 days following exposure.
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ina et al. (2019), who investigate the effect of acute exposure to PM2.5 on 3-day elderly

mortality. To our knowledge, no prior quasi-experimental estimates exist for the effect of air

pollution on short-run mortality for ages 1–64. For infants, the most comparable studies are

Currie and Neidell (2005) and Knittel, Miller and Sanders (2016), both of which estimate

the effect of PM10 (particulate matter with diameter less than 10 µm) on weekly infant mor-

tality. Currie and Neidell (2005) report null effects, while Knittel, Miller and Sanders (2016)

estimate significant positive effects. Our results are broadly consistent with this mixed ev-

idence: we find statistically insignificant but imprecise effects on 1-day and monthly infant

mortality, but detect a significant effect on 3-day infant mortality (Table A.6).

Finally, Section A.2 presents an analysis that rules out composition bias as an explanation

for the dynamic patterns in Figure 3—specifically, the possibility that cancer-related deaths

occurring weeks after exposure are misattributed to other causes. The appendix also reports

estimates by more detailed causes of death and includes a series of robustness checks following

Deryugina et al. (2019). These include using different sets of fixed effects, varying the number

of instrument leads and lags, clustering standard errors at different levels, estimating LIML

rather than 2SLS, and using placebo instruments.

4.2 Other air pollutants

Our main estimating equation focuses on the relationship between SO2 exposure and mor-

tality. However, SO2 may be co-transported with other harmful air pollutants or converted

into a secondary pollutant that also contributes to observed mortality effects. In particular,

SO2 transforms into sulfate (SO2−
4 ), a major component of PM2.5, at a rate of several percent

per hour. Our estimates may thus reflect the mortality effects of both SO2 and its secondary

products.

We investigate these possibilities using two complementary approaches. The first controls

directly for other air pollutants, instrumenting for each one separately. The second models

the atmospheric transport of SO2, NO2, and PM2.5, as well as the chemical conversion of SO2
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and NO2 into PM2.5, to assess the extent to which our estimates may reflect these additional

pollutants.

The air pollutants available in our dataset come from a variety of sources located in

different areas, are carried differently by the wind, and exhibit different chemical behaviors

in the atmosphere. Our instruments can capture this variation, but most pollutants aside

from SO2 are sparsely measured during our sample period, causing sharp drops in sample size

when they are included. We therefore limit our multi-pollutant analysis to two subsamples:

a small one that includes SO2 and four additional pollutants—NO2, O3, CO, and TSP—and

a larger one that includes only SO2 and TSP, our best proxy for PM2.5.

Panels A and B of Table 3 summarize the results. For reference, Column (1) in Panel A

reports that a 1-ppb increase in SO2 raises 1-day mortality by 0.089 deaths per million in the

smallest subsample. This effect decreases by about 40 percent when TSP is added (Column

2), and by about 20 percent when NO2, CO, and O3 are added (Column 3). Controlling

for all four pollutants simultaneously again shows a similar 40 percent decline (Column 4),

suggesting that part of our baseline estimate reflects the influence of particulate matter. In a

complementary analysis excluding TSP but including other pollutants (Table A.8), the SO2

coefficient remains stable, reinforcing the conclusion that only TSP meaningfully influences

the estimated effect of SO2.

Panel B presents results from the larger subsample that includes all observations with

non-missing values for SO2 and TSP. In this sample, the SO2 coefficient falls by 50 percent

after controlling for TSP, and the TSP coefficient falls by 30 percent after controlling for

SO2.17 These findings suggest that roughly half of the observed mortality effect attributed

to SO2 may reflect the influence of particulate matter that is either co-transported with or

formed from SO2.

Further interpretation of the estimates in Table 3 is complicated by our inability to

observe PM2.5 or to distinguish “primary” particulate matter that is directly emitted and

17A similar pattern holds for longer outcome windows: the SO2 and TSP coefficients decline in size when
jointly included but generally remain statistically significant.
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co-transported with SO2 from “secondary” particulate matter that is formed from SO2. To

address this limitation, we turn to simulations from the Intervention Model for Air Pollution

(InMAP), which models the atmospheric transport and chemical transformations of SO2,

PM2.5 (a component of TSP), and NO2 across the US.18 InMAP allows us to separately

measure primary and secondary PM2.5 and to quantify the share of secondary PM2.5 formed

specifically from SO2. For this analysis, we use data from the 1990 National Emissions

Inventory (NEI), the earliest year with suitable emissions information.19 We simulate two

scenarios. The first includes emissions solely from coal-fired power plants, the largest source

of SO2 emissions in the NEI. The second includes all emissions from counties with at least

one coal-fired power plant, thus capturing additional co-transported pollutants.

InMAP simulations yield the equilibrium ratio of ambient PM2.5 to ambient SO2, ex-

pressed in µg/m3 per ppb.20 In the first scenario—restricting emissions to those from

coal-fired power plants—that ratio is 2.3, indicating that each transported ppb of SO2 is

accompanied by 2.3 µg/m3 of PM2.5. Notably, over 90 percent of this PM2.5 is sulfate, a

secondary pollutant derived from SO2. The second scenario, which includes emissions from

all sources located in counties with coal-fired power plants, yields a similar ratio of 2.5, with

over 70 percent of PM2.5 consisting of sulfate. These findings suggest that most PM2.5 asso-

ciated with SO2 is not independently emitted but chemically derived from SO2 and would

therefore fall if SO2 emissions declined.

We can use these results to construct an upper bound for the mortality effect of PM2.5:

if all mortality is due to PM2.5 rather than SO2 itself, dividing our estimates by 2.5 would

yield the implied effect of one additional µg/m3 of PM2.5. While we remain agnostic about

the precise decomposition, we recognize that our estimates likely reflect a combination of

both SO2 and PM2.5. For brevity, we continue to refer to the combined effect simply as the

18The InMAP model is available for download from https://github.com/spatialmodel/inmap/

releases/tag/v1.9.6. The evaluation data used in our simulations are from Tessum et al. (2019).
19These data are available from https://gaftp.epa.gov/air/nei/nei_criteria_summaries/

1990criteriasummaryfiles/.
20InMAP reports all pollutants in units of µg/m3. At standard temperature (15 degrees Celsius), 1 ppb

of SO2 corresponds to about 2.62 µg/m3.

19

https://github.com/spatialmodel/inmap/releases/tag/v1.9.6
https://github.com/spatialmodel/inmap/releases/tag/v1.9.6
https://gaftp.epa.gov/air/nei/nei_criteria_summaries/1990criteriasummaryfiles/
https://gaftp.epa.gov/air/nei/nei_criteria_summaries/1990criteriasummaryfiles/


effect of SO2.

5 Long-run survival

5.1 Framework

Our framework for quantifying the long-run survival effects of chronic exposure to air pol-

lution builds on the dynamic production model of health developed by Lleras-Muney and

Moreau (2022). This model offers several advantages. First, it matches the predictive ac-

curacy of leading demographic models across a wide range of population survival curves.

Second, it can separately capture both mortality displacement and accelerated aging, two

distinct patterns that emerge in our empirical analysis and that have different implications

for long-run survival. Finally, the model requires only mortality data for calibration, unlike

other models such as Grossman (1972), which depend on additional inputs such as income,

prices, healthcare utilization, as well as how these respond to pollution exposure.

Let Hit denote the health capital of individual i ∈ {1, ..., N} at age t ∈ {0, ..., T}.

At birth, each individual is endowed with an initial stock of health, H∗i0, drawn from a

normal distribution. This health stock evolves over the individual’s lifetime according to the

following equation:

Hit = Hi,t−1 − d(t) + I + εit (3)

where:

Hi0 = H∗i0 ∼ N(µH , σH),

d(t) = δtα,

εit ∼ N(0, σε)

The health stock depreciates at a rate, d(t), which increases with the age of the individual.
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It is replenished at a constant rate, I, which captures time-invariant factors such as early-life

parental investment or lifetime health habits, and varies with an i.i.d. health shock, εit.

Death occurs when the individual’s health stock falls below a critical threshold, H, and is

denoted by the indicator variable Dit, where:

Di0 = 1 [Hi0 < H] ,

Dit = 1
[
Hit < H

∣∣Di,t−1 = 0
]
, t > 0

The model is fully characterized by seven parameters: {α, δ, I, µH , σH , σe,H}.21

We compute cohort mortality by simulating Equation (3) for a large population. The

mortality rate at age t, Mt, is defined as the number of individuals who die at age t divided

by the number who survive through age t−1. Survival at age t, St, is calculated recursively:

S1 = 1−M0,

St = St−1 (1−Mt−1) , t > 1

Pollution exposure affects mortality by altering the parameters of the model. While

it is plausible that exposure could affect the investment parameter, I, this channel would

imply large and persistent mortality increases across all ages, which is inconsistent with our

empirical estimates (Table A.6). Similarly, modifying the variance of the i.i.d. health shock,

εit, would imply that pollution improves health for half the population on average, which is

implausible. We therefore focus on two key channels: (1) changes to the death threshold,

H, which produces mortality displacement, and (2) changes to the depreciation parameter,

δ, which governs the aging process.22 These two channels have distinct implications for

21The model can be extended to incorporate external causes of death such as car accidents by including
two additional parameters specifying the age of onset and the severity of these external causes (Lleras-Muney
and Moreau, 2022). However, this extension is unnecessary for our analysis, which focuses on deaths from
biological (internal) causes.

22Deryugina and Reif (2023) show that estimates are very similar whether changes in depreciation are
modeled via δ or α. For simplicity, we focus on δ.
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long-run mortality. A temporary increase in the death threshold raises mortality among frail

individuals close to death but leaves the health of survivors unchanged. Once the threshold

reverts to its original level, mortality rates decline temporarily due to the reduced number of

individuals close to death. This dynamic produces short-run mortality displacement without

affecting long-term survival.

By contrast, a temporary increase in the depreciation rate, d(t), reduces the health capital

of all individuals—both healthy and frail—leading to persistently higher mortality. As with a

higher death threshold, mortality rises among frail individuals, but in this case, the decline in

the health stock also extends to the rest of the population. Because future health depends on

past health, mortality rates remain elevated even after d(t) reverts to its original trajectory.

To incorporate our empirical estimates into the model, we assume that the effect of

pollution exposure on model parameters depends only on current exposure. Under this

assumption, a given exposure shifts the death threshold and the depreciation parameter, δ,

by the same fixed amounts across all ages. However, because depreciation increases with

age (d(t) = δtα), older individuals experience larger health declines from the same exposure

shock. In addition, because they have lower baseline health capital, the same exposure will

increase mortality more at older ages. This prediction aligns with the age-specific mortality

patterns observed in our empirical analysis (Figure 4).

Our assumption that the effect of a given exposure on model parameters is constant is

supported by medical research showing that pollution triggers similar biological mechanisms

across different populations. For example, ambient air pollution exposure increases oxidative

stress and inflammation in both healthy and unhealthy individuals (Brook et al., 2010).

Likewise, randomized trials find that higher PM2.5 exposure raises stress hormone levels,

insulin resistance, inflammatory markers, and blood pressure even among healthy young

adults (Li et al., 2017).

We provide two empirical validations of our modeling framework. First, our assumption

that air pollution affects model parameters only through current exposure implies a testable
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prediction: parameter values calibrated using one age group should yield accurate mortality

predictions for other age groups. We confirm this prediction in the “leave-one-out” exercise

presented in Section 5.3. Second, we show that the model’s chronic exposure projections align

with both a three-month IV estimate from our empirical model and a three-year estimate

from Anderson (2020).

Our analysis proceeds in three steps. First, we calibrate the model’s baseline parameters

using a period life table. Second, we downscale the model from annual to daily frequency

and identify the change in parameter values required to match our IV estimates of the one-

day effect of pollution exposure. We assess model performance by comparing its short-run

predictions to internal and external estimates. Finally, we use the model to project the

long-run effect of chronic pollution exposure on survival. We explain these steps in more

detail below.

5.2 Calibration

5.2.1 Baseline parameters

The health production model described by Equation (3) depends on seven parameters:

{α, δ, I, σe, µH , σH ,H}. To achieve identification—that is, to ensure a unique solution—we

follow Lleras-Muney and Moreau (2022) and normalize two parameters: H = 0 and σH = 1.

We calibrate the five remaining parameters using simulated method of moments. Specifically,

we use the Nelder-Meader method to minimize the squared distance between the model’s

predicted age-specific survival and observed US population survival in 1972, the first year of

our sample.

Whereas Lleras-Muney and Moreau (2022) model mortality at the annual level, our anal-

ysis requires a daily resolution to match the granularity of our IV estimates. These estimates

imply that a 1-unit increase in SO2 raises same-day mortality by less than 0.1 deaths per

million (Table 2). Accurately capturing such small effects requires simulating a population

of several million individuals. However, calibrating the model’s baseline parameters involves
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solving a high-dimensional optimization problem over the entire life cycle, which becomes

computationally infeasible at the daily level with such a large population.23 We therefore

proceed in three steps.

First, we calibrate the baseline model at the annual level using N = 1, 000, 000 individu-

als. Second, we refine this calibration using daily survival data and N = 100, 000 individuals,

employing appropriately rescaled estimates from the annual model as starting values.24 Fi-

nally, we use the fully calibrated daily model to simulate N = 20, 000, 000 individuals. This

high-resolution version is used to calibrate the effect of pollution exposure on model parame-

ters, as described in the next section. Because that calibration involves evaluating parameter

changes at a single point in time—rather than solving an optimization problem over the full

life cycle—it remains computationally tractable at this scale.

Figure A.10 illustrates the results of our baseline calibration. The solid blue line shows

the survival curve from the US 1972 life table, while the dashed red line reports the survival

curve produced by our model. Apart from a small discrepancy in infancy, the two curves

align closely and produce life expectancy estimates that differ by only 0.1 years, indicating

a strong model fit. The calibrated parameter values are reported in Table A.15.

5.2.2 Pollution exposure parameters

Our IV estimates from Section 4 identify the effect of a 1-day, 1-unit increase in air pollu-

tion exposure on mortality over the following month. To incorporate these estimates into

our model, we allow exposure to affect two parameters: the death threshold, H, which gov-

erns mortality displacement, and δ, which governs the aging process. A 1-day increase in

the death threshold raises mortality rates temporarily among frail individuals, followed by

23Assuming a maximum lifespan of 110 years, a daily model requires T = 110×365 = 40, 150 daily periods.
Simulating N = 10, 000, 000 individuals produces 401.5 billion health capital values—3.2 terabytes if each
value is stored as an 8-byte number. A single simulation of this size takes several hours on a large server,
and the optimization routine requires hundreds of such simulations.

24We obtain the starting values by dividing the annual estimates of I and δ by 365, and σe by
√

365. We
leave µH or α unchanged. While these starting values provide a close approximation, recalibration remains
necessary due to the model’s nonlinear dependence on t.
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a compensating drop. In contrast, an increase in δ reduces health capital for the entire

population, raising both current and future mortality.

Consistent with Figure 3, we assume that cancer-related deaths reflect mortality dis-

placement, while all other deaths reflect accelerated aging. Let β̂1
a,c denote the same-day IV

mortality estimate for age group a and cause of death c. Consider a specific daily age, t,

within age group a. Using the high-resolution model described above, we solve numerically

for a new death threshold, H̃, that raises mortality by β̂1
a,cancer when applied for one day at

age t. We then solve for δ̃ such that the combination of H̃ and δ̃ reproduces β̂1
a,all, the total

same-day mortality effect.

Because we assume that pollution affects model parameters uniformly across ages, the

model can, in principle, be calibrated using any age group. To increase precision, we calibrate

the model separately using several older age groups and then average the resulting parameter

values when projecting long-run survival. We do not use age groups younger than 65 because

their mortality rates are too small to produce stable calibrations. The specific IV estimates

used for these calibrations are reported in Table A.16.

To reduce noise from daily variation in the i.i.d. health shocks, we average the calibration

across 50 different days near the midpoint of each age bin. For example, for the 65–69 age

group, we solve for the parameter changes using ages 68y1d, 68y2d, ..., 68y50d, and take the

mean.25 Section A.3 provides additional details. The final result is a set of parameters for

each age group, denoted as
{

H̃a, δ̃a
}

, that capture the effect of a 1-unit increase in exposure.

To account for econometric uncertainty in the IV estimates, we use a resampling-based

methodology. For each age group, we draw a value from a normal distribution centered

at the point estimate β̂1
a,all, using the estimated standard error as the standard deviation.

We then recalibrate the model based on this draw, holding fixed the proportion of cancer-

related deaths. We repeat the process 100 times and report the 5th and 95th percentiles of

the resulting distribution of parameter estimates.

25The optimal strategy would employ all 365× 5 = 1825 days in each 5-year age bin, giving more weight
to ages near the midpoint. However, this level of precision is computationally burdensome.
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Figure A.11 presents the resulting age-specific changes in the mortality threshold and

the depreciation rate parameters. The estimates are broadly similar across age groups, with

most values falling within the 90% confidence intervals of one another. This consistency

supports our modeling assumption that the effect of exposure on model parameters does not

vary systematically with age. Nonetheless, our long-run projections also explore alternative

scenarios in which these parameters are allowed to vary by age.

5.3 Validation

We perform two sets of validation exercises. The first compares out-of-sample mortality

projections from our model to our IV estimates. The second compares three-year projections

to quasi-experimental estimates from Anderson (2020).26

5.3.1 Internal validation

Because the model is calibrated only to 1-day IV estimates, we begin by assessing its ability

to predict mortality effects up to 90 days following exposure. Figure 5 shows results for the

65–69 age group. The solid blue line plots IV estimates of cumulative mortality, and the

green dot-dashed line reports “own-age” predictions—model projections based on calibration

using β̂1
65,cancer and β̂1

65,all. By construction, the own-age prediction exactly matches the one-

day IV estimate; more importantly, it remains within the 95% confidence intervals of the IV

estimates over the full 90-day horizon, indicating strong out-of-sample performance.

Next, we conduct a leave-one-out validation exercise. For each age group, we generate

predictions using the average of the calibrated parameters from the other four age groups.

For example, mortality in the 65–69 age group is predicted using
{

1
4

∑
a>65 H̃a,

1
4

∑
a>65 δ̃a

}
rather than the group’s own values. The resulting predictions, shown by the thick red dashed

line in Figure 5, also lie inside the 95% confidence intervals of the IV estimates—including the

26When comparing model projections to external estimates, it is important to recognize that projected
survival gains depend on baseline life expectancy. Simulations with alternative life tables suggest that each
one-year decrease in baseline life expectancy reduces the estimated survival gain from a fixed decrease in
exposure by 0.02 years. Lower baseline life expectancy also causes survival gains to occur earlier in life.
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1-day effect, which was not used for calibration. This result is especially notable given that

these predictions rely entirely on older age groups whose mortality effects are nearly an order

of magnitude larger (Figure 4a). As explained in Section 5.1, this pattern is consistent with

the model’s power-function specification for aging, where a fixed increase in δ produces larger

mortality effects at older ages. The accuracy of the leave-one-out predictions supports both

this functional form and our assumption that pollution affects health parameters uniformly

across ages.

To demonstrate that the model’s fit is not merely due to wide confidence intervals, we

compare it to two extreme alternatives: one in which none of the 1-day mortality effect is due

to displacement (“no displacement”) and another in which all of it is (“all displacement”). In

the no-displacement scenario, depicted by the orange dashed line at the top of Figure 5, the

mortality predictions rise sharply and overshoot the IV estimates. In the all-displacement

scenario, depicted by the black dashed line at the bottom of the figure, cumulative mortality

falls rapidly to zero, implying no lasting effect. Both scenarios lie well outside the 95%

confidence intervals, demonstrating that our IV estimates are sufficiently precise to rule

out a meaningful range of counterfactual model predictions. The wide gap between these

two extremes also highlights the importance of accurately distinguishing between mortality

displacement and accelerated aging.

Figure A.12 extends the leave-one-out validation to all five age groups 65 and over. In

general, the model’s predictions remain within the 95% confidence intervals across all five age

groups. The main exception is the 85+ age group, where the model’s predictions modestly

undershoot the IV estimates for the first half of the 90-day window. Overall, the close

agreement between model predictions and empirical estimates provides strong evidence that

the model accurately captures mortality dynamics following short-term exposure.

We further validate the model using IV estimates from longer exposure windows. Al-

though our wind-based instrument lacks the persistence to estimate chronic exposure effects

directly, it can still identify the effects of prolonged exposure lasting up to several months. To

27



that end, we construct predicted SO2 concentrations, ŜO2cd, using the first-stage estimates

from Equation (2):

ŜO2cd =
50∑
g=1

f̂ g(θcd) (4)

We then aggregate these predicted quantities into multi-day periods d̄ ranging from 2 to 90

days and calculate both observed and predicted SO2 averages for each period, denoted as

SO2cd̄ and ŜO2cd̄. Finally, we regress Ycd̄, the mortality rate in time period d̄, on SO2cd̄,

instrumenting with ŜO2cd̄, and controlling for county-by-month, month-by-year, and time

period (d̄) fixed effects.27 We then compare the resulting estimates to model predictions over

the same horizons.

Figure 6 reports results for the 65–69 age group. Cumulative mortality rises with ex-

posure duration, reaching about 10 deaths per million after one month and 30 after three

months—roughly fifteen times larger than the corresponding acute effects (Figure 5). No-

tably, the model’s predictions track the empirical estimates closely and remain within the

95% confidence intervals throughout, lending further credibility to its ability to predict the

mortality effects of pollution exposure. However, the strength of our first stage declines sub-

stantially with longer exposure windows, and many estimates for older age groups become

highly imprecise. We therefore interpret these longer-exposure results as suggestive rather

than conclusive.

5.3.2 External validation

Validating the model’s long-run accuracy is challenging because wind direction provides little

quasi-experimental variation beyond a few months and mortality estimates become imprecise

at longer horizons. Instead, we draw on quasi-experimental evidence from Anderson (2020),

who studies the impact of living downwind of Los Angeles highways on three-year mortality

among individuals aged 75 and older.

27Because some time periods d̄ cross calendar month boundaries, the month-by-year fixed effects are not
perfectly collinear with the time-period fixed effects. In those cases, we assign the month-by-year fixed effect
based on the earliest calendar month covered by the period.
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To compare our model’s predictions to his estimates, we construct a counterfactual for

our 1972 cohort where we increase SO2 levels by 1 unit (≈ 10 percent) beginning at age

72 and continuing for 10 years—the approximate exposure duration faced by individuals

in Anderson’s sample.28 We then calculate the ensuing three-year mortality increase for

ages 82–84 and express the result as a change in life expectancy at birth to enable a direct

comparison. Under this counterfactual, our model predicts a life expectancy reduction of

0.06 years (90% bootstrap CI: 0.02–0.13 years), which aligns with Anderson’s estimates that

a 10 percent increase in NO2 levels reduces life expectancy by 0.05–0.064 years.29

Because the model spans the full life cycle, it can also project effects beyond Anderson’s

three-year horizon. Extending the analysis to the end of life, we find that these 10 years

of increased exposure reduce life expectancy at birth by 0.12 years (90% bootstrap CI: 0.03

to 0.22)—roughly twice the effect observed over three years. This result implies that even

a three-year outcome window may substantially understate the total mortality burden of

chronic pollution exposure.

5.4 Long-run projections

Finally, we use our calibrated model to quantify the effects of a permanent, 1-ppb (≈ 10%)

decrease in SO2 exposure on life expectancy. To simulate this counterfactual, we compute

survival for the 1972 cohort using the average of the age-specific calibrated parameter values:

{
H̃, δ̃

}
=

{
1

5

∑
a≥65

H̃a,
1

5

∑
a≥65

δ̃a

}

We assume this reduction in exposure begins at birth, affecting model parameters for all

t ≥ 0. For comparison, we also estimate survival gains by extrapolating our age-specific

28Anderson (2020) estimates that 78 percent of the sample had lived in the same location for at least 10
years. The average age of the US population over 75 in the year 2000—the midpoint of the study—was 82.

29Like SO2, NO2 contributes to the formation of secondary particulate matter (e.g., nitrates). Anderson
(2020) attributes his estimated mortality effect to a mix of near-roadway air pollutants, which include
ultrafine particles, NO2, and CO.
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28-day IV estimates over the full life cycle.30

Figure 7 presents the results. Absent any change in exposure, the model predicts a life

expectancy of 71.32 years for the 1972 cohort. Under our preferred (“baseline”) specification,

depicted by the solid blue line, a permanent, 1-ppb decrease in SO2 exposure would improve

life expectancy by 1.13 years (1.58%). By contrast, the simple IV extrapolation implies a

gain of only 0.15 years (0.21%), about one-seventh as large and well below the model’s 90

percent confidence interval (0.40–1.99 years).31 This downward bias reflects a key limitation

of naive extrapolation: it fails to capture the gradual accumulation of health deficits that

may take decades to surface as increased mortality.

To test the sensitivity of the results to our assumption that pollution exposure has a

constant effect on model parameters, we consider two alternative specifications that allow

these effects to vary with age (Figure A.14). Model 2 (“age bins”) uses separate parameter

values for each older age group (65–69, 70–74, 75–79, 80–84, and 85+) and assigns the

65–69 values to younger ages. This approach, depicted by the red dashed line in Figure

7, produces slightly larger survival improvements than the baseline specification. Model 3

(“linear fit”) imposes a linear age trend on parameter values, subject to the constraint that

pollution cannot improve health and has no effect on health at birth. This more conservative

approach implies minimal latent health effects of pollution at young ages (Figure A.14) and

thus predicts smaller survival gains than the baseline specification. Even so, the predicted

gains remain much larger than those implied by extrapolating short-run IV estimates (Table

A.17).

Although the exposure reduction begins at birth, the resulting survival gains are concen-

trated in older ages. In our baseline specification, over 90 percent of improvement occurs

after age 50, and over 75 percent after age 65. This pattern reflects two distinct mechanisms.

30We use the 28-day IV estimates reported in the last row of Table A.6. We assign each estimate to the
midpoint of its age bin, set negative values to 0, and interpolate between points to construct a complete age
profile.

31Table A.17 reports survival gains and confidence intervals for exposure changes of up to 3 ppb. The
dose-response relationship is roughly linear, although we caution that this result relies on the assumed linear
relationship between air pollution and mortality in Equation (1).
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First, because health capital depreciates as a power function of age, the effect of reducing

the depreciation rate is larger later in life. Second, while early-life reductions in exposure do

boost health capital, their short-run effects on mortality are muted because most younger in-

dividuals remain well above the death threshold. As individuals age and their health capital

declines, these earlier gains begin to translate into higher survival.

5.4.1 Discussion

Because our model does not account for behavioral responses, its survival projections should

be interpreted as holding long-run behavior fixed. In the context of air pollution, economists

typically distinguish between two types of responses: avoidance and mitigation. Avoidance

refers to ex ante actions that reduce exposure, such as moving to a less polluted neighbor-

hood. While avoidance behavior complicates the measurement of actual exposure, it does

not undermine the model’s predictive ability provided that the timing and extent of exposure

are correctly specified. For example, the model can predict survival gains from relocation if

the age at which the move occurs and the resulting change in exposure are known.

Mitigation, by contrast, refers to ex post actions that reduce the harmful effects of ex-

posure, such as increased medical care. Because mitigation can alter the mapping from

exposure to model parameters, it poses a more serious challenge for long-run mortality pro-

jections. Nonetheless, our validation exercises suggest that mitigation has limited influence

on survival projections over short and medium time horizons: our model accurately extrap-

olates 1-day estimates to 90-day outcomes, and its three-year projections are consistent with

estimates from Anderson (2020). However, we cannot rule out the possibility that mitiga-

tion becomes more important over longer horizons. While prior studies have found that air

pollution exposure increases healthcare utilization over periods of up to three to five months

(e.g., Deschênes, Greenstone and Shapiro, 2017; Barwick et al., 2024), we are not aware

of quasi-experimental research on mitigation behavior over longer time periods. It also re-

mains unclear whether real-world mitigation meaningfully weakens the relationship between
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pollution and health. More direct evidence on these questions would be valuable.

If long-run mitigation does reduce the health impacts of air pollution, our model’s pro-

jections may alternatively be interpreted as capturing the total cost (or benefit) of a change

in pollution exposure, rather than its direct survival effect, provided certain assumptions

hold. In the context of temperature, Carleton et al. (2022) argue that a fully optimizing

agent will invest in mitigation until marginal benefit equals marginal cost. Applied to pol-

lution, this logic implies that the marginal mortality effect predicted by our model—when

expressed in monetary terms—could be interpreted as the sum of two components: the re-

alized (post-mitigation) marginal mortality costs and the marginal costs of mitigation itself.

In this sense, the predicted mortality effect approximates the full cost of pollution exposure.

6 Conclusion

Accurate estimates of the long-run health effects of chronic air pollution exposure are vital

for making informed policy decisions. We develop a novel two-step approach that combines

short-run causal mortality estimates with a structural model that produces reliable long-run

survival projections. Although we focus on air pollution, the framework is general and can

be applied to other health risks, provided that short-run mortality effects are available and

can be credibly mapped to relevant structural parameters.

To obtain causal estimates, we assemble a new dataset that combines daily data on

weather, air pollution, and mortality. We then instrument for changes in SO2 levels using

changes in wind direction. We find that acute air pollution exposure affects mortality through

two distinct channels: mortality displacement, where exposure hastens death among frail

individuals, and accelerated aging, where exposure produces lasting health damage that

raises future mortality risk.

We then incorporate these short-run IV estimates into our structural model to project the

long-run consequences of pollution exposure. We find that a permanent, ten percent decrease
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in air pollution exposure would improve life expectancy by 1.13 years, holding behavior

fixed. This gain is about seven times larger than what a naive extrapolation of short-run

IV estimates would suggest, demonstrating the importance of accounting for latent health

changes that unfold over time. While we do not assess the costs of reducing air pollution

emissions—a necessary ingredient for a full cost-benefit analysis—our results suggest that

the benefits of reducing chronic pollution exposure may be substantially underestimated.

Our analysis offers several lessons for applying this modeling approach in other contexts.

First, distinguishing between short-run mortality displacement and persistent damage to la-

tent health is crucial, as these two pathways have sharply different implications for long-run

survival. Second, age-specific mortality estimates can help identify which model parame-

ters are affected by exposure. Finally, in the absence of direct long-run empirical estimates,

pathophysiological evidence can inform model design. In the case of air pollution, med-

ical evidence points to accelerated aging as a key mechanism, with consistent biological

responses—like oxidative stress and inflammation—observed at different ages.
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Figure 1: The relationship between wind direction and SO2 concentration, Greater Philadelphia and Southern California areas
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Notes: Black dots on the maps indicate the locations of sulfur dioxide (SO2) pollution monitors. The graphs on the right plot the relationship between SO2 levels
and windward direction in each area. Windward direction refers to the direction the wind is coming from (e.g., “N” for wind blowing from the North and “NE”
for wind blowing from the Northeast). The 36 blue points report coefficient estimates from a non-parametric regression of SO2 levels on wind direction, grouped
into 10-degree angle bins. The shaded areas denote 95% confidence intervals. Red dashed lines report fitted values from the parametric sine-based specification
given by fg(θ) in Equation (2). All regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature,
precipitation, humidity, and wind speed; and two leads and two lags of the instruments. Standard errors are robust to heteroskedasticity.
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Figure 2: IV estimates for the effect of acute (1-day) air pollution exposure on cumulative mortality
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Notes: Each point reports an IV estimate from Equation (1) for the effect of a 1-day, 1 ppb increase in sulfur dioxide (SO2) exposure on mortality, measured
as cumulative deaths per million over time windows ranging from 14 days before to 27 days after exposure (with 0 indicating the day of exposure). The shaded
area denotes 95% confidence intervals. Post-exposure point estimates are reported in Column (2) of Table A.4. All regressions include county-by-month and
month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, humidity, and wind speed; leads of these weather controls; and
two leads and two lags of the instruments. Estimates are weighted by county population. Standard errors are clustered by county.
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Figure 3: IV estimates for the effect of acute (1-day) air pollution exposure on cumulative mortality, by cause of death
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Notes: Each point reports an IV estimate from Equation (1) for the effect of a 1-day, 1 ppb increase in sulfur dioxide (SO2) exposure on mortality from four
causes of death: cardiovascular disease, other diseases, cancer, and external causes. Mortality is measured as cumulative deaths per million over time windows
ranging from 14 days before to 27 days after exposure (with 0 indicating the day of exposure). The shaded areas denote 95% confidence intervals. Post-exposure
point estimates are reported in Table A.7. All regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum
temperature, precipitation, humidity, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by
county population. Standard errors are clustered by county.
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Figure 4: IV estimates for the effect of acute (1-day) air pollution exposure on 1-day mortality, by age group
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Notes: Each bar represents an IV estimate from Equation (1) for the effect of a 1-day, 1 ppb increase in sulfur dioxide (SO2)
exposure on same-day mortality for a particular age group. Error bars represent 95% confidence intervals. Corresponding
estimates are reported in Table A.5. All regressions include county-by-month and month-by-year fixed effects, as well as
flexible controls for maximum temperature, precipitation, humidity, and wind speed; leads of these weather controls; and two
leads and two lags of the instruments. Estimates are weighted by county population in each age group. Standard errors are
clustered by county. IV estimates for 28-day cumulative mortality by age group are shown in Figure A.9.
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Figure 5: Model-predicted effect of acute (1-day) air pollution exposure on survival, ages 65–69
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Notes: The solid blue line reports IV estimates from Equation (1) for the effect of a 1-day, 1 ppb increase in sulfur dioxide (SO2) exposure on cumulative mortality
for individuals ages 65–69. The shaded area denotes 95% confidence intervals. The thick green dashed line reports the “own-age” prediction from the dynamic
production model of health described by Equation (3), calibrated to match the 1-day IV estimate (first blue point) and to attribute the cancer-related portion of
that estimate to mortality displacement. The thick red dashed line (“leave-one-out”) reports model predictions using the average of the calibrated values from
other, older age groups (70–74, 75–79, 80–84, and 85+). The orange dashed line (“no-displacement”) at the top of the plot reports model predictions under the
assumption that none of the 1-day mortality effect reflects mortality displacement, while the black dashed line (“all-displacement”) at the bottom of the plot
assumes that the entire 1-day effect reflects mortality displacement. Figure A.12 shows analogous plots for all age groups 65 and older.
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Figure 6: Model-predicted effect of prolonged air pollution exposure on survival, ages 65–69
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Notes: The solid blue line reports IV estimates for the effect of a prolonged, 1 ppb increase in sulfur dioxide (SO2) exposure on cumulative mortality for individuals
ages 65–69. The shaded area denotes 95% confidence intervals. Estimates are obtained by constructing predicted SO2 fluctuations (Equation 4), aggregating
the data into multi-day periods, and then regressing mortality on average SO2 levels, instrumenting with the predicted SO2 fluctuations and controlling for
county-by-month, month-by-year, and multi-day period fixed effects. Estimates are weighted by county population in the 65–69 age group. The thick green
dashed line reports the “own-age” prediction from the dynamic production model of health described by Equation (3), calibrated to match the 1-day IV estimate
(first blue point) and to attribute the cancer-related portion of that estimate to mortality displacement. The thick red dashed line (“leave-one-out”) reports model
predictions using the average of the calibrated values from other, older age groups (70–74, 75–79, 80–84, and 85+).
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Figure 7: Projected effect of a permanent 1-unit decrease in air pollution exposure on survival gains for cohort born in 1972

Past survival gains
___________________________

Future survival gains
______________________________

2025

0

.25

.5

.75

1

1.25

0 10 20 30 40 50 60 70 80 90 100 110
Age

Model 1 (baseline) Model 2 (age bins) Model 3 (linear fit)
IV extrapolation

(years)

Notes: This figure shows the cumulative effect of a permanent, 1 ppb decrease in sulfur dioxide (SO2) exposure on survival for the cohort of US individuals born
in 1972. Projections are produced by the dynamic production model of health in Equation (3), calibrated using our 1-day IV estimates from Equation (1). Model
1 (“baseline”) assumes that the effect of pollution exposure on model parameters is constant across ages. Model 2 (“age bins”) uses separate parameter values
for each older age group (65–69, 70–74, 75–79, 80–84, and 85+) and assigns the 65–69 values to younger ages. Model 3 (“linear fit”) imposes a linear age trend
on parameter values. “IV extrapolation” projects changes in life expectancy by extrapolating our age-specific 28-day IV estimates over the full life cycle. The
cumulative gains at age 110 equal the values reported in the first row of Table A.17. In the absence of any change in SO2 exposure, the model predicts a life
expectancy of 71.32 years.
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Table 1: Summary statistics, 1972–1988

(1) (2) (3)

Mean Std. Dev. Observations

A. Pollution outcomes

SO2, ppb 9.07 12.68 2,042,258
NO2, ppb 21.45 15.74 796,539
CO, ppm 1.67 1.40 855,824
O3, ppb 25.54 13.73 674,340
TSP, µg/m3 63.23 40.10 634,095

B. One-day mortality rate outcomes

All-cause mortality, deaths per million 24.33 22.88 2,042,258
Cardiovascular 12.03 15.47 2,042,258
Cancer 5.08 8.97 2,042,258
Other 5.36 9.78 2,042,258
External 1.86 7.94 2,042,258

All-cause mortality by age group, deaths per million
Age 1 and under 32.98 165.37 2,042,258
Age 1–19 1.50 11.47 2,042,258
Age 20–44 4.33 18.22 2,042,258
Age 45–64 26.17 47.88 2,042,258
Age 65–69 69.05 168.34 2,042,258
Age 70–74 103.74 238.58 2,042,258
Age 75–79 155.36 355.93 2,042,258
Age 80–84 238.87 568.83 2,042,258
Age 85+ 437.05 913.59 2,042,258

Notes: Unit of observation is a county-day. Statistics are unweighted. Sample is restricted to observations where both
mortality and sulfur dioxide (SO2) are non-missing. Mortality is calculated as the number of daily deaths per million
individuals. Pollution data are from the Environmental Protection Agency, mortality counts are from the National Vital
Statistics, and population estimates are from the Surveillance, Epidemiology, and End Results (SEER) Program.
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Table 2: OLS and IV estimates for the effect of acute SO2 exposure on 1-day mortality

OLS IV

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.0083** 0.070** 0.074** 0.067** 0.068** 0.069**
(0.0028) (0.0065) (0.0063) (0.0065) (0.0065) (0.0063)

First-stage F -statistic 636 669 626 635 637
Mean outcome 24 24 24 24 24 24
Sample size 2,042,258 2,042,258 2,042,258 2,040,691 2,041,828 2,037,216
Number of weather controls 2,373 2,373 0 10,150 3,954 16,152

Weather controls
Baseline weather variables X X X X X
Min. temperature variables X X
Less granular bins X
Grid-level bins X

Notes: The dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, as well as two leads and two lags of the instruments. Column (2) presents our
baseline specification, which includes controls for all observed combinations of bins of maximum temperature, precipitation,
humidity, and wind speed. Column (3) omits all weather controls. Column (4) adds bins of minimum temperature and
controls for all observed weather bin combinations. Column (5) uses 6-degree Celsius temperature bins instead of 3-degree
bins. Column (6) replaces temperature and precipitation bins based on county-day averages with bins based on the underlying
2.5-by-2.5-mile grid cells. All regressions are weighted by county population. Standard errors, clustered by county, are
reported in parentheses. A */** indicates significance at the 5%/1% level.
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Table 3: IV estimates for the effect of acute SO2 exposure on 1-day mortality, controlling for other pollutants

(1) (2) (3) (4)

A. All-pollutant sample

SO2, ppb 0.089** 0.053** 0.068** 0.053**
(0.014) (0.017) (0.017) (0.018)

TSP, µg/m3 0.021** 0.021**
(0.0056) (0.0047)

NO2, ppb 0.046* 0.015
(0.018) (0.018)

O3, ppb –0.045 –0.057**
(0.029) (0.021)

CO, ppm –0.084 –0.059
(0.25) (0.19)

First-stage F -statistic 91 20 12 10
Mean outcome 27 27 27 27
Sample size 79,049 79,049 79,049 79,049

B. SO2/TSP sample

SO2, ppb 0.063** 0.030*
(0.0077) (0.012)

TSP, µg/m3 0.027** 0.017**
(0.0040) (0.0059)

First-stage F -statistic 243 117 46
Mean outcome 25 25 25
Sample size 633,878 633,878 633,878

Notes: The dependent variable is number of deaths per million people on the day of exposure. Regressions are estimated using
two-stage least squares where each pollutant is treated as an endogenous regressor. All regressions include county-by-month
and month-by-year fixed effects, along with flexible controls for maximum temperature, precipitation, humidity, and wind
speed; leads of these weather controls; and two leads and two lags of the instruments. All regressions are weighted by county
population. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1%
level. National means for all air pollutants appear in Table 1. Table A.8 presents estimates using a third sample that does
not condition on observing TSP.
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A Supplementary information and analysis

A.1 Data

Monitor-level data for sulfur dioxide (SO2), total suspended particulates (TSP), nitrogen dioxide (NO2),

O3, and carbon monoxide (CO) for the years 1972–1988 were obtained by email request from the US

Environmental Protection Agency (EPA). Each SO2 observation provides a sample measurement, usually

recorded over a period of one hour. We dropped SO2 observations with durations longer than 24 hours or

values above 1000 parts per billion (ppb) or below –2 ppb.1 We dropped CO, NO2, and O3 observations

with negative values. All TSP observations had non-negative values. We then aggregated pollutant data to

the monitor-day level, weighting by the time duration of each measurement. Finally, data were aggregated

to the county-day level by averaging across all monitors within each county.

Figure A.1 displays the population-weighted concentrations and the number of counties with at least

one operational monitor, by year for each pollutant. With the exception of O3, the population-weighted

means for all pollutants decline substantially during our sample period. CO data are readily available

from the mid-1970s onward, covering about 225 counties annually, while O3 data are unavailable prior to

1980. NO2 coverage is high for most of the 1970s but drops sharply by the late 1980s. SO2 data offer

broader spatial coverage than most other pollutants, with over 400 counties monitoring SO2 each year and

about half the US population living in a county with at least one SO2 monitor. While TSP monitors cover

more counties than SO2 monitors, they collect data less frequently and are more often located in sparsely

populated areas. At the county-day level, we have 62 percent fewer population-weighted TSP observations

than SO2 observations.

Figure A.3 shows the locations of the 4,740 active SO2 pollution monitors during our 1972–1988 sample

period. The monitors are present in 1,041 counties.

A.2 Short-run empirical results: additional analyses and robustness checks

Complier analysis

Table A.1 describes complier characteristics by regressing county-level measures obtained from the Regional

Economic Information System dataset on the strength of the first stage. The unit of observation is a

county-year. Regressions include year fixed effects and are weighted by the county population in each

1According to the AQS Data Coding Manual version 2.38 (February 2, 2010), the maximum allowable sample value for
SO2 is 1000 ppb. The EPA informed us by email that small negative values can arise due to noise and should be included in
sample averages to avoid bias. We chose –2 as the bottom cutoff because it appeared to be the minimum allowable sample
value.



year. The strength of the first stage is not significantly associated with population size, the percent of

Black residents, per-capita income, or the employment rate. Counties with stronger first stages have higher

per-capita government transfers, but the magnitude of the coefficient is small: a $55 difference for each

1 ppb difference in the first stage, relative to a mean of $1,290. The largest difference is for mean SO2

concentrations: 1.5 ppb higher for each 1 ppb difference in the first stage relative to a mean of 9.5 ppb.

Controlling for autocorrelation in air pollution

Because wind direction is autocorrelated, our IV estimates for the effect of 1-day exposure may inadver-

tently capture the effects of multi-day exposure. Table A.2 addresses this concern by regressing tomorrow’s

SO2 levels on today’s (instrumented) SO2 levels and baseline controls, while varying the number of leads

and lags of the wind instrument. Without any leads and lags of the instrument, the correlation between

predicted SO2 today and SO2 one day from now is 0.26, which is large and statistically significant. How-

ever, including just one lead reduces this correlation to near zero and renders it statistically insignificant.

This finding suggests that our preferred specification with two leads and two lags is conservative, and

that similar results could be obtained with fewer leads and lags. Table A.3 further shows that our main

estimates are insensitive to the numbers of leads and lags included in the regression.

Ruling out composition bias

The observed differences in mortality trends by cause of death (Figure 3) could potentially be driven by

composition bias. For example, if cancer-related deaths occurring weeks after exposure are misattributed

to cardiovascular causes, we might incorrectly observe a rising trend in cardiovascular mortality in place

of a true increase in cancer deaths. This type of misclassification is especially plausible among people with

multiple chronic conditions. To investigate this possibility, we estimate the effect of acute exposure on

deaths where cancer was listed as either the underlying or secondary (contributing) cause of death. Those

estimates, shown in Figure A.7, are very similar to our main estimates, indicating that misclassification in

the underlying cause of death does not explain the cancer pattern in Figure 3.

Estimates by detailed causes of death

Figure A.8 shows cause-specific estimates for the mortality effect of SO2 over time, disaggregating cardio-

vascular and other diseases into 5 and 21 subcategories, respectively. Three cardiovascular subcategories—

heart disease, cerebrovascular disease, and atherosclerosis—show significant same-day and monthly mor-

tality increases. We also find strong and growing effects for deaths from chronic obstructive pulmonary

disease (COPD), pneumonia and influenza, and other respiratory diseases, which collectively account for

over 99 percent of all deaths from respiratory illness (Table A.14). By contrast, we find no significant

monthly effects for conditions not previously linked to air pollution exposure, such as stomach ulcers and

appendicitis.
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Longer mortality window by age

Figure A.9 and Table A.6 report age-specific mortality estimates for outcome windows up to one month

(28 days) following exposure. Among individuals aged 65 and over, the monthly estimates are at least

three times larger than the 1-day estimates, indicating that any short-run mortality displacement is more

than offset by delayed effects of acute exposure. Among individuals aged 20–64, however, the monthly

estimates are smaller than the 1-day estimates and statistically insignificant. This pattern suggests that

acute pollution exposure increases mortality among young adults primarily by accelerating death among

those who would have died within a month regardless. By contrast, older adults who die following acute

air pollution exposure would have survived at least one month.

Alternative control variables and clustering levels

Table A.9 investigates the sensitivity of our estimates to including alternative sets of fixed effects. Column

(1) reproduces our baseline estimate, while Columns (2)–(6) present five reasonable alternatives, including

variants that control for state-by-calendar-month-by-year (Column 3) or county-by-year (Column 4) fixed

effects. These changes have little effect on the size of our estimate, indicating that our estimates are

robust to seasonal variation in the climate-mortality relationship and unobserved variables that vary across

locations.

Table A.10 shows that clustering standard errors at broader geographic levels, such as state or geo-

graphic group, also has little effect on the size of our standard errors.

Assessing potential violations of monotonicity

We interpret our IV estimate as a weighted average treatment effect where the weights are non-negative,

which requires monotonicity of air pollution in the instruments (Angrist, Graddy and Imbens, 2000). In

other words, if the instruments increase SO2 levels in one county, then SO2 levels in other counties assigned

to the same geographic group cannot fall. This assumption could be violated if the relationship between

wind direction and SO2 varies substantially across counties located within the same group. We investigate

this possibility with two alternative specifications that allow the effect of wind direction on SO2 to vary

over either a larger or smaller geographic area. Columns (2)–(3) of Table A.11 show that these alternatives

produce estimates similar to our main estimate (Column 1), suggesting that violations of the monotonicity

assumption are unlikely to drive our findings.

Columns (4)–(6) of Table A.11 show that our estimates change little if we employ the following non-

parametric specification for f g(θcd):

f g(θcd) =
b∑
i=1

γig1[Gc = g]× 1

[
360

b
(i− 1) ≤ θcd <

360

b
i

]
where the first indicator function, 1[Gc = g], is equal to 1 if county c is a member of group g and 0

otherwise. The second indicator function is equal to 1 if the local wind direction, θcd, now expressed in

degrees rather than radians, lies between 360
b

(i − 1) and 360
b
i for some fixed value b. For example, when
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b = 4 and i = 1, the indicator function will equal 1 if the wind direction lies between 0 and 90 degrees.

Columns (4)–(6) report estimates when we set b equal to 9, 6, and 4, respectively.

Assessing potential weak instrument bias

Our reported F -statistics in Table 2 exceed 600 and our 2SLS estimates differ significantly from OLS

estimates, indicating that weak instrument bias is unlikely. As an additional check, Table A.12 shows that

our 2SLS estimates are similar to those from LIML, which is approximately median unbiased even in the

presence of many weak instruments. We also conduct a placebo exercise using randomly generated wind

directions in place of the actual wind direction (Table A.13). The resulting first-stage F -statistics never

exceed 4, confirming that actual wind direction captures meaningful variation in SO2 levels rather than

spurious correlations.

A.3 Model calibration

The dynamic production model of health given by Equation (3) depends on seven parameters:{
α, δ, I, σe, µH , σH ,H

}
. To achieve identification, we normalize two parameters: H∗ = 0 and σ∗H = 1. The

five remaining parameters are calibrated using a 1972 period life table, as described in Section 5.2. We

assume that pollution exposure only affects the parameters δ and H, and denote their post-exposure-change

values as
{
δ̃, H̃

}
.

Let Θ∗ = {α∗, I∗, µ∗H , σ∗H , σ∗e} denote the calibrated baseline parameters before any changes in exposure.

Consider a population of N individuals whose health capital evolves according to Equation (3). Let S be a

random-number seed that fixes the initial stock of health capital, Hi0, and the evolution of the i.i.d. shock,

εit, for all individuals. Define Mt

(
δ∗,H∗

∣∣∣Θ∗, N, S) as the deterministic mortality rate at time t ≥ 0 in the

absence of changes in pollution exposure.

We use age-specific IV estimates for the mortality effect of air pollution exposure to recover
{
δ̃, H̃

}
. Let

β̂1
a,c denote the IV estimate for the effect of acute exposure on 1-day mortality for age group a from cause

of death c, and let [t0a, t
1
a] define the age range (in days) spanned by age group a. For any age, t ∈ [t0a, t

1
a],

we can solve for H̃at as the implicit solution to:

β̂1
a,cancer = Mt

(
δ∗, H̃at

∣∣∣Θ∗, N, S)−Mt

(
δ∗,H∗

∣∣∣Θ∗, N, S) (A.1)

We then solve for δ̃, which is defined implicitly by:

β̂1
a,all = Mt

(
δ̃at, H̃at

∣∣∣Θ∗, N, S)−Mt

(
δ∗, H̃at

∣∣∣Θ∗, N, S) (A.2)

Because health capital is strictly decreasing in δ and death occurs when health falls below H, the mortality

rate, Mt(·), is monotonically increasing in both δ and H. Consequently, the solutions
{
δ̃at, H̃at

}
to Equations

(A.1) and (A.2) are unique and can be found using standard root-finding algorithms.2

We can solve for
{
δ̃at, H̃at

}
for any t ∈ [t0a, t

1
a]. We use the approximate integer midpoint of each age

2Solving for δ̃ first and then H̃ yields numerically similar but not identical results.
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bin, t = round [(t0a + t1a)/2].3 To reduce noise from the i.i.d. health shocks, we average over multiple daily

ages near the center of each age bin. Specifically, we solve Equations (A.1) and (A.2) for 50 different days

near the approximate midpoint of each age bin and take the average. For example, for a = 65 (the 65–69

age group), we solve for
{
δ̃65,t, H̃65,t

}
using ages t = 68y1d, t = 68y2d, ..., t = 68y50d.4 Figure A.13 shows

the model-implied cumulative mortality effects of acute (1-day) exposure across the 50 daily ages in the

65–69 age group, using the calibrated
{
δ̃65,t, H̃65,t

}
for each age t. By construction, the first-day effect

matches the 1-day IV estimate for the 65–69 age group (see first row of Column (5) in Table A.6). The

subsequent values report longer-run effects of exposure up to 90 days later. The “own-age prediction” in

Figure 5 is the average of these 50 trajectories.

We compute the age-specific parameter solutions,
{

H̃a, δ̃a
}

, as the averages of these 50 solutions:

H̃a =
1

50

∑
t

H̃at

δ̃a =
1

50

∑
t

δ̃at

Figure A.11 reports {H̃a, δ̃a} for the five oldest age groups, expressed as deviations from the baseline

calibrated values (i.e., H̃a − H∗ = H̃a and δ̃a − δ∗). The long-run survival projections shown in Figure 7

use the average across the five oldest age groups:

H̃ =
1

5

∑
a≥65

H̃a

δ̃ =
1

5

∑
a≥65

δ̃a

3For the 85+ age group, we use a midpoint of 90, which is the average age of death in that group during our sample
period.

4The optimal strategy would employ all 365 × 5 = 1825 days in the 5-year age bin, giving more weight to the ages near
the midpoint. However, this is computationally burdensome and offers limited additional precision.
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Figure A.1: Air pollution means and population coverage levels, 1972–1988
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Notes: The solid blue lines report population-weighted pollution levels for all US counties with at least one daily reading for
that pollutant. The dashed red line reports the number of counties with at least one operational monitor for the pollutant.
Air pollution data are obtained from the EPA Air Quality database. SO2, CO, NO2, and O3 are measured in parts per
billion (ppb). Total suspended particulates (TSP) is measured in micrograms per cubic meter (µg/m3).
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Figure A.2: Trends in US mortality rates, 1972–1988

(a) By age group
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Notes: These two figures report annual mortality rates for the US population. These rates are calculated using mortality
data from the National Vital Statistics and population data from SEER. Annual mortality rates are approximately 365 times
larger than the daily mortality rates used in the analysis.
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Figure A.3: SO2 monitor locations and geographic group assignments

Notes: This map shows the 50 geographic groups included in our main estimation sample, each shaded in a different color. Black dots indicate the locations of
SO2 monitors. Unshaded (white) counties are excluded from the sample. The Southern California and Greater Philadelphia groups are shown in greater detail in
Figure 1. As specified in Equation (2), the first-stage effect of wind direction on air pollution levels is allowed to vary across geographic groups.
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Figure A.4: The relationship between wind direction and SO2 levels, by geographic group
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Notes: The graphs plot the relationship between SO2 levels and windward direction for each of the geographic groups shown in
Figure A.3. Windward direction refers to the direction the wind is coming from (e.g., “N” for wind blowing from the North and
“NE” for wind blowing from the Northeast). The 36 blue points report coefficient estimates from a non-parametric regression
of SO2 levels on wind direction, grouped into 10-degree angle bins. The shaded areas denote 95% confidence intervals. Red
dashed lines report fitted values from the parametric sine-based specification given by fg(θ) in Equation (2). All regressions
include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation,
humidity, and wind speed; and two leads and two lags of the instruments. Standard errors are robust to heteroskedasticity.
The plots for “Philadelphia, PA” and “Los Angeles, CA” are reproduced in Figure 1 with the labels “Greater Philadelphia
area” and “Southern California area.”

A-10



Figure A.5: Strength of the first stage, by geographic group

No data 0−1 ppb 1−2 ppb 2−3 ppb 3−4 ppb 4+ ppb

Notes: This map shows the strength of the first-stage relationship from Equation (2) for each of the 50 geographic groups included in our main estimation sample.
Strength is measured as the difference in predicted SO2 levels (in parts per billion) between the most and least polluting wind directions. Predictions are based

on the parametric sine specification f̂g(θ) = γ̂1g sin (θ) + γ̂2g sin (θ/2), for θ ∈ [0, 2π). Unshaded (white) counties are excluded from the sample.
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Figure A.6: IV estimates for the effect of acute (1-day) SO2 exposure on cumulative mortality up to 90 days following exposure
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Notes: Each point reports an IV estimate from Equation (1) for the effect of a 1-day, 1 ppb increase in sulfur dioxide (SO2) exposure on mortality, measured
as cumulative deaths per million over time windows ranging from 14 days before to 89 days after exposure (with 0 indicating the day of exposure). The shaded
areas denote 95% confidence intervals. Corresponding point estimates for t = 0 through t = 27 are reported in Column (2) of Table A.4. All regressions include
county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, humidity, and wind speed; leads of these
weather controls (up to 27 leads); and two leads and two lags of the instruments. Estimates are weighted by county population. Standard errors are clustered by
county.
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Figure A.7: IV estimates for the effect of acute (1-day) air pollution exposure on cancer-related mortality
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Notes: Each point reports an IV estimate from Equation (1) for the effect of acute (1-day) sulfur dioxide (SO2) exposure on cancer-related mortality (deaths per
million). “Cancer (underlying)”, which replicates the cancer estimates shown in Figure 3, includes only deaths where cancer is listed as the underlying cause of
death on the death certificate. “Cancer (underlying or secondary)” expands this definition to includes deaths where cancer is listed either as the underlying cause
or as a contributing secondary cause. Mortality is measured as cumulative deaths per million over time windows ranging from the day of exposure to 27 days after
exposure (with 0 indicating the day of exposure). The shaded areas denote 95% confidence intervals. All regressions include county-by-month and month-by-year
fixed effects, as well as flexible controls for maximum temperature, precipitation, humidity, and wind speed; leads of these weather controls; and two leads and
two lags of the instruments. Estimates are weighted by county population. Standard errors are clustered by county.
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Figure A.8: IV estimates for the effect of acute (1-day) air pollution exposure on mortality, by detailed cause of
death
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Notes: Each point reports an IV estimate from Equation (1) for the effect of a 1-day, 1 ppb increase in sulfur dioxide (SO2)
exposure on mortality from twenty-six different causes of death. Cause-of-death definitions are available in Table A.14.
Mortality is measured as cumulative deaths per million over time windows ranging from the day of exposure to 27 days after
exposure. The shaded areas denote 95% confidence intervals. All regressions include county-by-month and month-by-year
fixed effects, as well as flexible controls for maximum temperature, precipitation, humidity, and wind speed; leads of these
weather controls; and two leads and two lags of the instruments. Estimates are weighted by county population. Standard
errors are clustered by county.
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Figure A.9: IV estimates for the effect of acute (1-day) air pollution exposure on 28-day mortality, by age group
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Notes: Each bar represents an IV estimate from Equation (1) for the effect of a 1-day, 1 ppb increase in sulfur dioxide (SO2)
exposure on 28-day mortality for a particular age group. Error bars represent 95% confidence intervals. Estimates are also
reported in Table A.6. All regressions include county-by-month and month-by-year fixed effects, as well as flexible controls
for maximum temperature, precipitation, humidity, and wind speed; leads of these weather controls; and two leads and two
lags of the instruments. Estimates are weighted by county population. Standard errors are clustered by county.
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Figure A.10: Baseline calibration of the dynamic production model of health
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Notes: The solid blue line depicts the survival curve derived from the 1972 period life table for the United States. The dashed red line reports the predicted
survival curve produced by our dynamic production model of health (3), which was calibrated using the 1972 life table data. The corresponding calibrated model
parameters are reported in Column (2) of Table A.15.
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Figure A.11: The effect of acute (1-day) air pollution exposure on model parameters

(a) Increase in ln(δ) (ln(δ̃a)− ln(δ∗))
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Notes: Panel (a) reports the effect of a 1-day, 1 ppb increase in SO2 exposure on the change in the parameter δ from the
health model (3), assuming all non-cancer deaths reflect changes in δ while all cancer deaths reflect changes in H. The

baseline value is denoted by δ∗, and the calibrated post-exposure value for age group a is denoted by δ̃a. Panel (b) reports
the corresponding effect on the parameter H, which governs mortality displacement and is calibrated using cancer-related
deaths. The error bars report the 5th and 95th percentiles from 100 bootstrap replications. Baseline parameter values are
reported in Column (2) of Table A.15.
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Figure A.12: Comparison of model predictions to IV estimates, by age group
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(d) Ages 80–84
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Notes: The solid blue line reports IV estimates from Equation (1) for the effect of a 1-day, 1 ppb increase in SO2 exposure
on cumulative mortality, with 95% confidence intervals given by the blue shaded area. The thick red dashed line (“leave-one-
out”) reports model predictions using the average of the calibrated values from other older age groups (70–74, 75–79, 80–84,
and 85+). The orange dashed line (“no-displacement”) at the top of the plot reports model predictions under the assumption
that none of the 1-day mortality effect reflects mortality displacement, while the black dashed line (“all-displacement”) at
the bottom of the plot assumes that the entire 1-day effect reflects mortality displacement.
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Figure A.13: Predicted effects of acute (1-day) air pollution exposure on cumulative mortality, for selected ages
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Notes: Each plot corresponds to a different age (68 years and 1 day, 68 years and 2 days, etc.) from the dynamic production model of health (3). The plots
show the predicted effect of a 1-day, 1 ppb increase in SO2 exposure on mortality, measured as cumulative deaths per million over time windows ranging up to 89
days after exposure (with 0 indicating the day of exposure). The average across these 50 plots corresponds to the green dot-dashed line (“own-age prediction”)
in Figure 5.
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Figure A.14: Values of δ̃ used across models for long-run survival projections
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Notes: This figure shows the counterfactual values δ̃ assumed by the different models producing the long-run survival projections shown in Figure 7. The five red
markers report the log of δ̃a from the age-specific calibrations. The “baseline” specification uses the average of these five values, { 15

∑
a≥65 δ̃a}, represented by

the solid blue line. The “age bins” model uses separate parameter values for each older age group (65–69, 70–74, 75–79, 80–84, and 85+) and assigns the 65–69
values to younger ages. The “linear fit” model assumes the effect is zero at birth (age 0) and fits a line through the five calibrated values and the age-zero point,

subject to the constraint that exposure cannot improve health. The same approach is used to assign counterfactual values for H̃.

A
-22



Table A.1: Complier county characteristics for the wind direction instruments

Population Percent
65+

Percent
Black

Per-
capita
income

(dollars)

Per-
capita

transfers
(dollars)

Employment
rate

Mean
SO2

(ppb)

(1) (2) (3) (4) (5) (6) (7)

First-stage strength, ppb –144,700 0.19* –0.24 62 55** –0.66 1.5**
(137,372) (0.086) (0.33) (74) (11) (0.76) (0.15)

Mean outcome 1,303,561 11 13 10,987 1,290 52 9.5
Sample size 9,497 9,497 9,365 9,356 9,356 9,356 9,497
R-squared 0.040 0.075 0.0056 0.79 0.74 0.042 0.42

Notes: Complier characteristics are estimated by regressing the county-level variable reported at the top of each column on
the strength of the first stage. First-stage strength is measured as the difference in predicted SO2 levels between the most
and least polluting wind directions. All regressions include year fixed effects and are weighted by county population. County
characteristics are obtained from the Regional Economic Information System dataset published by the Bureau of Economic
Analysis. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1%
level.
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Table A.2: Autocorrelation in wind-driven SO2 exposure, for different numbers of instrument leads and lags

(1) (2) (3) (4) (5)

SO2, ppb 0.26** 0.028 0.010 0.0095 0.012
(0.022) (0.016) (0.014) (0.013) (0.013)

Number of instrument leads 0 1 1 2 3
Number of instrument lags 0 0 1 2 3
First-stage F -statistic 765 667 616 576 577
Sample size 1,864,366 1,864,366 1,864,366 1,864,366 1,863,479

Notes: The dependent variable is tomorrow’s SO2 levels. We instrument for today’s SO2 levels using today’s wind direction
instruments. All regressions include county-by-month and month-by-year fixed effects, along with flexible controls for both
today’s and tomorrow’s maximum temperature, precipitation, humidity, and wind speed. Columns (2)–(5) also include
varying numbers of leads and lags of the instruments. All regressions are weighted by county population. Standard errors,
clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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Table A.3: IV estimates for the effect of acute SO2 exposure on 1-day mortality, using different numbers of
instrument leads and lags

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.070** 0.076** 0.076** 0.071** 0.070** 0.070**
(0.0065) (0.0070) (0.0065) (0.0065) (0.0065) (0.0064)

# of instrument leads 2 0 1 3 4 6
# of instrument lags 2 0 1 3 4 6
First-stage F -statistic 636 866 681 637 633 633
Mean outcome 24 24 24 24 24 24
Sample size 2,042,258 2,042,258 2,042,258 2,041,316 2,040,383 2,038,559

Notes: The dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, along with flexible controls for maximum temperature, precipitation, humidity,
and wind speed; and two leads and two lags of the instruments. All regressions are weighted by county population. Standard
errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.

A-25



Table A.4: OLS and IV estimates for the effect of acute SO2 exposure on cumulative mortality, for different
outcome windows

(1) (2)

Outcome window OLS IV

1 day 0.0083** 0.070**
(0.0028) (0.0065)

3 days 0.022** 0.11**
(0.0084) (0.010)

5 days 0.031* 0.14**
(0.014) (0.014)

7 days 0.034 0.17**
(0.019) (0.018)

10 days 0.039 0.20**
(0.026) (0.022)

14 days 0.045 0.22**
(0.036) (0.030)

21 days 0.051 0.24**
(0.051) (0.041)

28 days 0.048 0.25**
(0.065) (0.055)

Notes: The dependent variable is cumulative number of deaths per million people in the days following acute (1-day) exposure.
Each estimate comes from a separate regression. IV estimates in Column (2) correspond to those shown in Figure 2. All
regressions include county-by-month and month-by-year fixed effects, along with flexible controls for maximum temperature,
precipitation, humidity, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. All
regressions are weighted by county population. Standard errors, clustered by county, are reported in parentheses. A */**
indicates significance at the 5%/1% level.
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Table A.5: IV estimates for the effect of acute SO2 exposure on 1-day mortality, for different age groups

(1) (2)

Age group Absolute effect, deaths per million Relative effect, percent

0–1 –0.0055 –0.017
(0.044) (0.13)

1–19 0.00029 0.019
(0.0016) (0.10)

20–44 0.0087** 0.20**
(0.0033) (0.076)

45–64 0.050** 0.19**
(0.0099) (0.038)

65–69 0.28** 0.41**
(0.038) (0.055)

70–74 0.20** 0.20**
(0.060) (0.058)

75–79 0.42** 0.27**
(0.078) (0.050)

80–84 0.80** 0.33**
(0.12) (0.050)

85+ 1.9** 0.44**
(0.26) (0.060)

Notes: The dependent variable is number of deaths per million people on the day of exposure. Each estimate comes from a
separate regression. The relative effect is expressed as a percentage of the age group’s mean one-day mortality rate. Estimates
are also shown in panels (a) and (b) of Figure 4. All regressions include county-by-month and month-by-year fixed effects,
along with flexible controls for maximum temperature, precipitation, humidity, and wind speed; and two leads and two lags
of the instruments. All regressions are weighted by county population. Standard errors, clustered by county, are reported in
parentheses. A */** indicates significance at the 5%/1% level.

A-27



Table A.6: IV estimates for the effect of acute SO2 exposure on cumulative mortality, for different age groups
and outcome windows

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Outcome window 0–1 1–19 20–44 45–64 65–69 70–74 75–79 80–84 85+

1 day –0.0055 0.00029 0.0087** 0.050** 0.28** 0.20** 0.42** 0.80** 1.9**
(0.044) (0.0016) (0.0033) (0.0099) (0.038) (0.060) (0.078) (0.12) (0.26)

3 days 0.15* –0.00038 0.012* 0.076** 0.31** 0.44** 0.79** 1.4** 3.2**
(0.060) (0.0031) (0.0046) (0.016) (0.059) (0.084) (0.13) (0.19) (0.39)

7 days 0.17 –0.0021 0.023** 0.076** 0.43** 0.71** 1.6** 2.1** 4.8**
(0.12) (0.0052) (0.0077) (0.024) (0.093) (0.13) (0.21) (0.31) (0.61)

14 days 0.098 –0.0074 0.014 0.11* 0.71** 0.84** 1.9** 2.8** 6.9**
(0.20) (0.0063) (0.010) (0.043) (0.15) (0.22) (0.30) (0.51) (1.1)

28 days 0.26 –0.00083 –0.0033 0.14 0.89** 1.1** 2.6** 3.0** 8.7**
(0.33) (0.0094) (0.018) (0.076) (0.25) (0.31) (0.47) (0.78) (1.5)

Notes: The dependent variable is cumulative number of deaths per million people in the days following acute (1-day) exposure.
Each estimate comes from a separate regression. Age groups are indicated at the top of each column. All regressions include
county-by-month and month-by-year fixed effects, along with flexible controls for maximum temperature, precipitation,
humidity, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. All regressions
are weighted by county population. Standard errors, clustered by county, are reported in parentheses. A */** indicates
significance at the 5%/1% level.

A-28



Table A.7: IV estimates for the effect of acute SO2 exposure on cumulative mortality, for different causes of
death and outcome windows

(1) (2) (3) (4)

Outcome window Cardiovascular Cancer Other External

1 day 0.026** 0.023** 0.020** 0.0020
(0.0032) (0.0027) (0.0026) (0.0011)

3 days 0.052** 0.029** 0.030** 0.0041*
(0.0057) (0.0037) (0.0035) (0.0018)

5 days 0.069** 0.026** 0.042** 0.0044
(0.0078) (0.0047) (0.0056) (0.0026)

7 days 0.088** 0.027** 0.050** 0.0053
(0.011) (0.0052) (0.0067) (0.0029)

10 days 0.10** 0.029** 0.062** 0.0053
(0.013) (0.0067) (0.0084) (0.0034)

14 days 0.12** 0.024** 0.068** 0.0050
(0.017) (0.0079) (0.011) (0.0041)

21 days 0.13** 0.018 0.079** 0.0081
(0.021) (0.011) (0.015) (0.0058)

28 days 0.14** 0.020 0.093** 0.0033
(0.027) (0.016) (0.020) (0.0074)

Notes: The dependent variable is cumulative number of deaths per million people in the days following acute (1-day)
exposure. Each estimate comes from a separate regression. The underlying cause of death is indicated at the top of each
column. Estimates are also shown in Figure 3. All regressions include county-by-month and month-by-year fixed effects, along
with flexible controls for maximum temperature, precipitation, humidity, and wind speed; leads of these weather controls;
and two leads and two lags of the instruments. All regressions are weighted by county population. Standard errors, clustered
by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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Table A.8: IV estimates for the effect of acute SO2 exposure on 1-day mortality, controlling for all pollutants
except TSP

(1) (2) (3) (4) (5) (6) (7)

SO2, ppb 0.085** 0.063** 0.090** 0.078** 0.063** 0.082** 0.067**
(0.0092) (0.013) (0.011) (0.0098) (0.013) (0.011) (0.014)

NO2, ppb 0.028* 0.027 0.028
(0.012) (0.014) (0.014)

O3, ppb –0.021 –0.016 –0.019
(0.018) (0.017) (0.018)

CO, ppm 0.25 0.023 0.23 –0.021
(0.15) (0.19) (0.15) (0.21)

First-stage F -statistic 256 64 39 93 42 38 38
Mean outcome 26 26 26 26 26 26 26
Sample size 277,600 277,600 277,600 277,600 277,600 277,600 277,600

Notes: The dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, along with flexible controls for maximum temperature, precipitation, humidity,
and wind speed; and two leads and two lags of the instruments. All regressions are weighted by county population. Standard
errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1% level. National means
for all air pollutants are available in Table 1.

Table A.9: IV estimates for the effect of acute SO2 exposure on 1-day mortality, using different fixed effects

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.070** 0.066** 0.071** 0.072** 0.072** 0.071**
(0.0065) (0.0065) (0.0066) (0.0067) (0.0068) (0.0068)

Fixed effects county-
month,

month-year

county, year,
month

county, state-
year-month

county-year,
state-month

county, year,
state-month

county,
month-year,
state-month

First-stage F -statistic 636 613 681 723 612 613
Mean outcome 24 24 24 24 24 24
Sample size 2,042,258 2,042,258 2,042,236 2,042,243 2,042,258 2,042,258

Notes: The dependent variable is number of deaths per million people on the day of exposure. All regressions include flexible
controls for maximum temperature, precipitation, humidity, and wind speed; and two leads and two lags of the instruments.
All regressions are weighted by county population. Standard errors, clustered by county, are reported in parentheses. A */**
indicates significance at the 5%/1% level.
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Table A.10: IV estimates for the effect of acute SO2 exposure on 1-day mortality, clustering standard errors at
different levels

(1) (2) (3) (4)

SO2, ppb 0.070** 0.070** 0.070** 0.070**
(0.0065) (0.0065) (0.0064) (0.0061)

Clustering level(s) County County,
geographic group

by year

Geographic group State

First-stage F -statistic 636 636 636 636
Mean outcome 24 24 24 24
Sample size 2,042,258 2,042,258 2,042,258 2,042,258

Notes: The dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, along with flexible controls for maximum temperature, precipitation, humidity,
and wind speed; and two leads and two lags of the instruments. All regressions are weighted by county population. Standard
errors, clustered at the level(s) indicated in each column, are reported in parentheses. Geographic groups are shown in Figure
A.3. A */** indicates significance at the 5%/1% level.

Table A.11: IV estimates for the effect of acute SO2 exposure on 1-day mortality, using different first-stage
specifications

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.070** 0.082** 0.061** 0.060** 0.063** 0.066**
(0.0065) (0.0075) (0.0054) (0.0051) (0.0056) (0.0061)

Number of geographic groups 50 25 100 50 50 50
Wind angle parameterization Sines Sines Sines 40-degree

bins
60-degree

bins
90-degree

bins
Number of instruments 100 50 200 400 250 150
First-stage F -statistic 636 1,116 371 181 251 340
Mean outcome 24 24 24 24 24 24
Sample size 2,042,258 2,042,258 2,042,258 2,042,258 2,042,258 2,042,258

Notes: The dependent variable is number of deaths per million people on the day of exposure. Column (1) reports our main
specification, which allows the effect of wind direction to vary across 50 geographic groups and assumes that its effect on
pollution, fg(·), follows the sine parameterization in Equation (2). Columns (2)–(3) vary the number of geographic groups
employed in the first stage. Columns (4)–(6) use alternative non-parametric parameterizations for fg(·). All regressions in-
clude county-by-month and month-by-year fixed effects, along with flexible controls for maximum temperature, precipitation,
humidity, and wind speed; and two leads and two lags of the instruments. All regressions are weighted by county population.
Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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Table A.12: 2SLS and LIML estimates for the effect of acute SO2 exposure on cumulative mortality, for
different outcome windows

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.070** 0.070** 0.17** 0.16** 0.25** 0.24**
(0.0065) (0.0063) (0.018) (0.015) (0.055) (0.023)

IV method 2SLS LIML 2SLS LIML 2SLS LIML
Outcome window (days) 1 1 7 7 28 28
First-stage F -statistic 636 895 567 799 472 665
Mean outcome 24 24 170 170 681 681
Sample size 2,042,258 2,040,800 2,042,258 2,040,794 2,042,258 2,040,781

Notes: The dependent variable is cumulative number of deaths per million people in the days following acute (1-day)
exposure. All regressions include county-by-month and month-by-year fixed effects, along with flexible controls for maximum
temperature, precipitation, humidity, and wind speed; leads of these weather controls; and two leads and two lags of the
instruments. All regressions are weighted by county population. Standard errors, clustered by county, are reported in
parentheses. A */** indicates significance at the 5%/1% level.
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Table A.13: Placebo tests for the effect of acute SO2 exposure on mortality

(1) (2) (3)

SO2, ppb 0.027 –0.32 –0.51
(0.060) (0.22) (0.50)

Outcome window, days 1 7 28
First-stage F -statistic 3.3 3.5 3.7
Mean outcome 24 170 681
Sample size 2,042,258 2,042,258 2,042,258

Notes: This table reports the results of placebo regressions where the instruments are based on wind direction that is a
randomly generated variable. The dependent variable is cumulative number of deaths per million people in the days following
acute (1-day) exposure. All regressions include county-by-month and month-by-year fixed effects, along with flexible controls
for maximum temperature, precipitation, humidity, and wind speed; leads of these weather controls; and two leads and two
lags of the instruments. All regressions are weighted by county population. Standard errors, clustered by county, are reported
in parentheses. A */** indicates significance at the 5%/1% level.
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Table A.14: ICD-8 and ICD-9 codes for subcategories of cardiovascular and other diseases

ID Disease ICD-8 codes (1968–1978) ICD-9 codes (1979–1998) Prevalence (%)

Cardiovascular diseases

1 Heart diseases 390–398.9, 402–402.9, 404–429.9, 410–429.9 390–398.9, 402–402.9, 404–429.9 37.58
2 Hypertension 400–400.9, 401–401.9, 403–403.9 401–401.9, 403–403.9 0.37
3 Cerebrovascular disease Same as ICD-9 430–438.9 8.69
4 Atherosclerosis Same as ICD-9 440–440.9 1.38
5 Other cardiovascular diseases Same as ICD-9 441–448.9 1.17

Other diseases

6 Infectious and parasitic diseases Same as ICD-9 001–139.9 1.13
7 Benign neoplasms Same as ICD-9 210–239.9 0.29

Endocrine, nutritional and metabolic
diseases, and immunity disorders

8 Diabetes Same as ICD-9 250–250.9 1.81
9 Other endocrine, nutritional and metabolic

diseases, and immunity disorders
Same as ICD-9 240–249.0, 260–279.9 0.57

10 Diseases of blood and blood forming organs Same as ICD-9 280–289.9 0.32
11 Mental disorders Same as ICD-9 290–319 0.71

Diseases of the nervous system and
sense organs

12 Meningitis Same as ICD-9 320–322.9 0.08
13 Parkinson’s disease (paralysis agitans) 342 332–332.1 0.21
14 Other diseases of nervous system and sense

organs
320–341.9, 343–389.9 323–331.9, 332.2–389.9 0.89

Diseases of the respiratory system
15 Acute bronchitis and bronchiolitis Same as ICD-9 466–466.9 0.03
16 Pneumonia and influenza 470–474.9, 480–486.9 480–487.9 2.97
17 COPD and allied conditions 490–493.9 490–496.9 2.52
18 Other respiratory diseases 460–469.9, 475–479.9, 487–489.9, 494–519.9 460–465.9, 467–479.9, 488–489.9, 497–519.9 1.25

Diseases of the digestive system
19 Ulcer of stomach and duodenum Same as ICD-9 531–533.9 0.33
20 Appendicitis Same as ICD-9 540–543.9 0.03
21 Hernia Same as ICD-9 550–553.9, 560–560.9 0.29
22 Chronic liver diseases Same as ICD-9 571–571.9 1.48
23 Other digestive diseases Same as ICD-9 520–530.9, 534–539.9, 544–549.9, 554–559.9, 561–570.9, 572–579.9 1.54

Diseases of the genitourinary system
24 Nephritis and kidney infections Same as ICD-9 580–590.9 0.91
25 Other diseases of the genitourinary system Same as ICD-9 591–629.9 0.64
26 Residual: Complications of pregnancy,

childbirth, and the puerperium; diseases of
veins and lymphatics, and other diseases of
circulatory system; diseases of the skin and
subcutaneous tissue; diseases of the
musculoskeletal system and connective tissue;
congenital anomalies; certain conditions
originating in the perinatal period; and
ill-defined conditions

Same as ICD-9 450–459.9, 630–799.9 4.28

Notes: This table lists the ICD-8 and ICD-9 codes used to define the causes of death shown in Figure A.8. Death certificates used ICD-8 codes during the years 1968–1978 and ICD-9 codes
during the years 1979–1998. ICD-8 codes are shown only when they differ from the corresponding ICD-9 codes. Prevalence reports the number of deaths from each cause during 1972–1988
as a percentage of total deaths.
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Table A.15: Baseline parameter values for the dynamic production model of health

(1) (2)

Parameter Annual data Daily data

I 0.74773 0.0020521
α 1.53762 1.537619
ln δ –5.83878 –11.74124
µH 10.39737 11.43803
σe 2.25247 0.1178985

N 1,000,000 100,000
SSE 57.80479 20880.82

Notes: This table reports baseline parameter values for the dynamic production model of health given by Equation (3).
Column (1) presents values calibrated to annual survival data from a 1972 period life table, while Column (2) reports
corresponding values based on daily data. The parameters H and σH (not shown) are normalized to 0 and 1, respectively.
N denotes the number of individuals in the simulation, and SSE is the sum of squared errors. The model fit corresponding
to Column (2) is shown in Figure A.10.

Table A.16: IV estimates for the effect of acute SO2 exposure on all-cause and cancer-related 1-day mortality,
ages 65 and over

(1) (2)

Age group All causes Cancer-related causes

65–69 0.28** 0.13**
(0.038) (0.021)

70–74 0.20** 0.12**
(0.060) (0.025)

75–79 0.42** 0.14**
(0.078) (0.034)

80–84 0.80** 0.12*
(0.12) (0.053)

85+ 1.9** 0.16**
(0.26) (0.060)

Notes: These estimates are used to calibrate the effect of air pollution exposure on mortality in the dynamic production
model of health given by Equation (3). The dependent variable is number of deaths per million people on the day of exposure.
Each estimate comes from a separate regression. All regressions include county-by-month and month-by-year fixed effects,
along with flexible controls for maximum temperature, precipitation, humidity, and wind speed; and two leads and two lags
of the instruments. All regressions are weighted by county population. Standard errors, clustered by county, are reported in
parentheses. A */** indicates significance at the 5%/1% level.
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Table A.17: Projected effect of permanent change in SO2 on survival gains (years)

(1) (2) (3) (4)

IV extrapolation Model 1 (baseline) Model 2 (age bins) Model 3 (linear fit)

1-ppb decrease 0.15 1.13 1.24 0.77
[0.06, 0.29] [0.40, 1.99] [0.70, 1.98] [0.04, 1.63]

2-ppb decrease 0.29 2.32 2.28 1.58
[0.11, 0.58] [0.70, 4.10] [1.55, 3.03] [–0.04, 3.35]

3-ppb decrease 0.44 3.45 3.40 2.36
[0.17, 0.88] [0.99, 6.26] [2.35, 4.77] [–0.09, 5.17]

1-ppb increase –0.14 –1.03 –1.04 –0.68
[–0.28, –0.06] [–1.96, –0.39] [–1.71, –0.71] [–1.61, –0.04]

2-ppb increase –0.28 –2.20 –2.23 –1.45
[–0.56, –0.11] [–3.77, –0.59] [–2.95, –1.38] [–3.04, 0.16]

3-ppb increase –0.42 –3.10 –3.24 –2.06
[–0.83, –0.17] [–4.98, –0.92] [–3.95, –2.39] [–3.97, 0.14]

Notes: Each value in this table reports the projected change in life expectancy (in years) resulting from a permanent change
in SO2 exposure of up to 3 part per billion (ppb) for the cohort of US individuals born in 1972. In the absence of any
change in exposure, predicted life expectancy is 71.32 years. 90% bootstrap confidence intervals, based on the 5th to 95th
percentiles of the bootstrapped distribution, are reported in brackets. Values in Column (1) are calculated by extrapolating
our age-specific 28-day IV estimates to the whole life-cycle. Values in Column (2) come from the dynamic production model of
health described by Equation (3), under the assumption that the effect of pollution exposure on model parameters is constant
across ages. Values in Column (3) allow these effects to vary across age groups. Values in Column (4) also incorporate age
variation but assume a linear age trend. Figure 7 shows how the survival gains reported in the first row are distributed across
the life cycle.
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