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wyoung is a Stata command designed to control the family-wise error rate when performing
multiple hypothesis tests. This document outlines the algorithm employed by wyoung and
presents simulation results that demonstrate its effectiveness across various settings. To
install the command and access its help file, type ssc install wyoung, replace at the Stata
prompt. The latest development version is available for download from Github:
https://github.com/reifjulian/wyoung

After installation, type help wyoung at the Stata prompt to view examples and learn the
syntax. Companion Stata code for the simulations described below is available on Github:
https://reifjulian.github.io/wyoung/documentation/simulations/wyoung_simulations.
do

wyoung was originally developed for use in the Illinois Workplace Wellness Study. Please
cite the command as Jones, Molitor and Reif (2019):

Jones, Damon, David Molitor, and Julian Reif. “What Do Workplace Wellness Programs
Do? Evidence from the Illinois Workplace Wellness Study.” Quarterly Journal of Economics,
November 2019, 134(4): 1747–1791.

https://github.com/reifjulian/wyoung
https://reifjulian.github.io/wyoung/documentation/simulations/wyoung_simulations.do
https://reifjulian.github.io/wyoung/documentation/simulations/wyoung_simulations.do
https://www.nber.org/workplacewellness


1 Methodology
Multiple hypotheses arise when there are multiple outcomes, subgroups, or independent
parameters of interest. Consider testing K > 1 distinct null hypotheses. The family-wise
error rate (FWER) is the probability of rejecting at least one true null hypothesis—commonly
referred to as making “false discovery”—within this “family” of K hypotheses. A procedure
is said to provide strong control of the FWER if it maintains the error rate at or below a
specified level regardless of how many of the K hypotheses are true. In contrast, weak control
of the FWER applies only under the assumption that all K hypotheses are true, i.e., when
the complete null hypothesis holds.

wyoung controls the FWER using the free step-down resampling method of Westfall and
Young (1993) (Algorithm 2.8, pp. 66–67). This method leverages resampling techniques,
such as bootstrapping (sampling with replacement) or permutation (shuffling), to adjust the
standard p-values obtained from model estimation. A detailed description of the algorithm
is provided below.

1.1 Bootstrapping

The bootstrapping procedure involves the following steps:

1. Estimate {β̂1, β̂2, ..., β̂K}. Calculate the conventional, unadjusted p-values {p1, p2, ..., pK}
for individual tests of the null hypotheses β̂k = 0.1 Without loss of generality, assume
the p-values are indexed such that p1 ≤ p2 ≤ ... ≤ pK .

2. Draw with replacement from the dataset to create a bootstrap sample.

(a) Compute the bootstrap estimates {β̂∗
i1, β̂

∗
i2, ..., β̂

∗
iK}. Calculate the conventional,

unadjusted p-values {p∗i1, p∗i2, ..., p∗iK} for individual tests of the null hypotheses
β̂∗
ik = β̂k. The k index here corresponds to the ranking computed in step 1. It

will not generally be the case that p∗i1 ≤ p∗i2 ≤ ... ≤ p∗iK .
(b) Enforce monotonicity with respect to the original ordering in step 1 by computing

the successive minima:

q∗iK = p∗iK
q∗i,K−1 = min(q∗iK , p

∗
i,K−1)

q∗i,K−2 = min(q∗i,K−1, p
∗
i,K−2)

...
q∗i1 = min(q∗i2, p

∗
i1)

3. Repeat step 2 N times. For each bootstrap sample i and hypothesis k, define the
indicator COUNTik = 1 if q∗ik ≤ pk and 0 otherwise.2

1Alternative hypotheses are also possible, including combinations of coefficients (see Section 2.3).
2To compute “single-step” p-values instead of “step-down” p-values, define the indicator COUNTik = 1 if

min{p∗i1, p∗i2, ..., p∗iK} < pk and 0 otherwise. Resampling-based single-step methods often control family-wise
type III (sign) error rates. Whether their step-down counterparts also control type III error rates is unknown
(Westfall and Young, 1993, p. 51).
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4. For each hypothesis k = 1, 2, ..., K, calculate the fraction of successive minima that
were lower than the original p-value:

rk =
1

N

N∑
i=1

COUNTik

5. Enforce monotonicity using successive maximization to calculate the adjusted p-value:

padj1 = r1

padj2 = max(r1, r2)
...

padjK = max(rK−1, rK)

This resampling algorithm provides strong control of the FWER under the condition
of subset pivotality, a multivariate generalization of pivotality.3 Subset pivotality requires
that the joint distribution of any subvector of p-values remains unaffected by the truth
or falsehood of hypotheses corresponding to p-values not included in the subvector. This
condition is satisfied in many settings, including significance testing for coefficients in a
general multivariate regression model with possibly non-normal or heteroskedastic errors
(Westfall and Young, 1993, pp. 122–123). If subset pivotality does not hold, the procedure
provides only weak control of the FWER. In this case, the adjustment is valid solely for the
smallest p-value. One notable example of subset pivotality failure arises in tests involving
overlapping subgroups. Consider a scenario where hypothesis 1 tests whether an effect exists
for the entire group, and hypothesis 2 tests whether the effect exists specifically for women.
If hypothesis 2 is true, hypothesis 1 must also be true, creating a dependency between the
hypotheses that violates the subset pivotality condition.4

It is possible for this algorithm to produce adjusted p-values that are smaller than unad-
justed p-values. For instance, in the extreme case where only one bootstrap sample is used
(N = 1 in steps 3 and 4), all adjusted p-values are either zero or one. Those equal to zero
will, of course, be smaller than the unadjusted values. To avoid this issue, we recommend
using a large number of bootstraps. Westfall and Young (1993) recommend at least 10,000
bootstrap draws. If adjusted p-values consistently lie below the unadjusted p-values, even
when the number of bootstraps is large, this may indicate model misspecification. For exam-
ple, in simulations with clustered errors (described below), we found that adjusted p-values
were often smaller than unadjusted values if a cluster bootstrap was not employed.

1.2 Permutation

The permutation procedure follows the bootstrapping approach described above.5 However,
it includes one key modification in step 2(a), where a sharp null hypothesis is tested:

3The sampling distribution of a pivotal statistic does not depend on the specific distribution that generated
the data; the t-statistic is a common example.

4In principle, it is possible for an effect in one subgroup to perfectly offset the effect in other subgroups,
resulting in no overall effect. However, if treatment effects are heterogeneous and drawn from a continuous
distribution, the probability of such an exact cancellation is zero.

5Thanks to Adam Sacarny for helping implement the permutation procedure.
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2. Permute (shuffle) the data under the null hypothesis.

(a) Compute the shuffled estimates {β̂∗
i1, β̂

∗
i2, ..., β̂

∗
iK}. Calculate the conventional, un-

adjusted p-values {p∗i1, p∗i2, ..., p∗iK} for individual tests of the sharp null hypotheses
β̂∗
ik = 0. The k index here corresponds to the ranking computed in step 1. It will

not generally be the case that p∗i1 ≤ p∗i2 ≤ ... ≤ p∗iK .

Permutation breaks the link between the shuffled variable and the outcome, producing a
sharp null hypothesis that assumes an exact treatment effect of zero for all observations. In
wyoung, permuting a variable by default also severs its association with all other covariates.
However, users can optionally specify that multiple variables be permuted jointly if the
analysis requires preserving their relationship.

As with bootstrapping, this permutation algorithm requires subset pivotality in order to
provide strong control of the FWER. Westfall and Young (1993) note that this condition must
hold exactly for permutation analyses “provided that only one test per [outcome] variable is
performed” (p. 115).

The hypothesis tests performed in step 2(a) (and 1(a)) rely on standard normal-theory
approximations rather than permutation. While permutation could theoretically be used to
compute these tests, doing so would scale computational complexity with order N2 rather
than N , making the algorithm impractical for many applications. To assess whether this sim-
plification compromises validity, we recommend comparing unadjusted p-values derived from
permutation with those based on normal-theory approximations. Significant discrepancies
between the two indicate that the adjusted p-values may be unreliable.

2 Simulations
We conducted simulations to evaluate the effectiveness and statistical power of the resampling
algorithm described in Section 1.1. Let µ be a ten-dimensional zero vector (0, 0, ..., 0)′.
Let I be a 10 × 10 identity matrix. Let Σ be a 10 × 10 covariance matrix where all off-
diagonal elements are equal to 0.9. The data-generating process for each simulation scenario
is described below:

1. Normal i.i.d. errors (ten outcomes)

e ∼ N (µ, I)

Y = e

2. Normal i.i.d. errors (one outcome, ten subgroups)

e ∼ N (0, 1)

Y = e

3. Correlated errors (ten outcomes)

X ∼ N (µ, I)

e ∼ N (µ,Σ)

Y = 0.2X + e
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4. Lognormal, mean-zero i.i.d. errors (ten outcomes)6

e ∼ exp[N (µ, I)]−
√

exp[1]

Y = e

We simulated 2,000 datasets for each of these four data-generating processes. In each of
these 2,000 simulations, we estimated a series of 10 regressions:

Yi = α + βiXi + εi, i = 1...10.

The sample size for each regression was 100. The regressor Xi ∼ N(0, 1) in scenarios 1, 2,
and 3. In scenario 4, the regressor is just a constant equal to one (α is omitted). There are
ten null hypotheses that correspond to these ten regressions: βi = 0, i = 1, ..., 10. These ten
null hypotheses are all true in scenarios 1, 2, and 4; the hypotheses are all false in scenario
3 (correlated errors).

Table 1 compares the effectiveness of the Westfall-Young resampling algorithm to other
well-known multiple inference adjustment methods.7 Each column in the table reports how
often at least one null hypothesis was rejected using each adjustment method. When out-
comes are independent and normally distributed, the probability that at least one of the ten
hypotheses is statistically significant is equal to 1 − (1 − 0.05)10 = 0.401. This calculation
accords well with the simulation: the first row of column (1) reports that at least one of the
ten hypotheses was rejected at α = 0.05 in 39.8 percent of the 2,000 simulations when no
adjustment was performed. By contrast, the Bonferroni-Holm, Sidak-Holm, and Westfall-
Young adjustments reject at least one null hypothesis only about 4 percent of the time, thus
achieving a FWER of less than 5 percent.

In column (2), the ten hypotheses arise from examining multiple subgroups rather than
multiple outcome variables. Failing to adjust the p-values again results in a high rejection rate
of nearly 40 percent. The Bonferroni-Holm, Sidak-Holm, and Westfall-Young adjustment
methods, however, all achieve rejection rates of around 5 percent.

A key limitation of the Bonferroni-Holm and Sidak-Holm adjustment methods is their
reliance on the assumption of independence among outcomes, which can lead to overly conser-
vative results when outcomes are correlated. This limitation is evident in column (3), which
reports rejection rates for a scenario where the ten null hypotheses are all false. Under these
conditions, the Bonferroni-Holm and Sidak-Holm methods reject at least one hypothesis in
only about 35 percent of simulations. By contrast, the Westfall-Young resampling algorithm,
which accounts for correlations among outcomes, achieves a rejection rate in excess of 50
percent, demonstrating its superior performance in this context.

Although traditional adjustment methods such as Bonferroni-Holm and Sidak-Holm are
generally thought to be conservative, Westfall and Young (1993) emphasize that these tra-
ditional methods can actually over-reject when the data-generating process is nonnormal.

6The mean of the standard lognormal distribution is
√
exp[1].

7The Bonferroni-Holm and Sidak-Holm (step-down) p-values are calculated as follows. Sort the K
unadjusted p-values so that p1 ≤ p2 ≤ ... ≤ pK . The Bonferroni-Holm adjusted p-values are calcu-
lated as {p1K,max[p1, p2(K − 1)], ...,max[pK−1, pK ]}. The Sidak-Holm adjusted p-values are calculated
as {1− (1− p1)

K ,max[p1, 1− (1− p2)
(K−1)], ...,max[pK−1, pK ]}. If the calculation yields a value larger than

one, then the adjusted p-value is set equal to one.
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Column (4) illustrates this issue: the resampling method of Westfall-Young achieves a FWER
below 6 percent, whereas the Bonferroni-Holm and Sidak-Holm methods incorrectly reject
at least one null hypothesis in more than 20 percent of simulations, far exceeding the target
threshold of 5 percent.

2.1 Clustered standard errors

Westfall and Young (1993) do not discuss methods for conducting multiple inference in
regression models where observations are grouped into clusters and model errors exhibit
within-cluster correlation. While clustered errors do not violate subset pivotality—a condi-
tion automatically satisfied in standard linear regression models—it is important to adapt
the resampling procedure in step 2 to account for clustering. Specifically, the rsampling must
be performed over entire clusters rather than individual observations. This adjustment can
be accomplished by specifying the cluster() option in the wyoung command.

To illustrate the importance of resampling over clusters, we conducted an additional set
of simulations. Let µ be a ten-dimensional zero vector (0, 0, ..., 0)′, and let I be a 10 × 10
identity matrix. The data-generating process for this simulation scenario is:

5. Serially correlated errors (ten outcomes)

i = 1...100 clusters

t = 1...10 time periods

ηi ∼ N (µ, I)

eit ∼ N (µ, I)

Yit = ηi + eit

We again simulated 2,000 datasets. In each simulation, we estimated the following ten
regressions:

Yit = α + βiDit + εit, i = 1...10,

where the dummy variable Dit = 1{t > STARTi} and STARTi is a Poisson random variable
with mean equal to five. These regressions were estimated under two different assumptions
about the standard errors (homoskedastic or clustered) and with and without a bootstrap
cluster. The results are presented in Table 2.

Comparing column (2) to column (1) in the first row of Table 2, we observe that cluster-
ing the standard errors results in a smaller FWER relative to assuming homoskedasticity.
However, the rejection rate for the unadjusted value in column (2) still significantly exceeds
5 percent, as it does not account for the number of hypotheses being tested.8

The second and third rows of Table 2 show that the Bonferroni-Holm and Sidak-Holm
corrections achieve an FWER of less than 5 percent when the standard errors are clustered.
This result is expected, as the outcome variables in this simulation are independent.

The fourth row of Table 2 highlights the importance of properly accounting for clus-
tered standard errors when implementing the Westfall-Young correction. Column (2) shows

8The unadjusted, Bonferroni-Holm, and Sidak-Holm values do not vary across columns (2) and (3) because
these two columns differ only in their bootstrapping methodology, which affects only the Westfall-Young
correction.
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that (erroneously) employing a simple bootstrap that resamples over individual observations,
rather than clusters, causes the Westfall-Young correction to perform worse than the unad-
justed specification. However, column (3) shows that employing a cluster bootstrap restores
the Westfall-Young correction’s ability to control the FWER at 5 percent.

2.2 Multiple regressors

The simulations described above address scenarios involving multiple outcomes or multiple
subgroups. Another common context for multiple hypotheses testing arises when there are
multiple coefficients of interest within the same model. The Westfall-Young adjustment
exhibits strong control of the FWER in this setting as well (Westfall and Young, 1993, p.
134).

To assess the effectiveness of the adjustment in this setting, we conducted additional
simulations. Let µ be a ten-dimensional zero vector (0, 0, ..., 0)′, and let I be a 10 × 10
identity matrix. The data-generating process for this simulation scenario is:

6. Normal i.i.d. errors (ten outcomes, two regression coefficients)

D1 ∼ 1{U(0, 1) > 0.5}
D2 ∼ 1{U(0, 1) > 0.5}
e ∼ N (µ, I)

Y = e

We simulated 2,000 datasets using this data-generating process. In each simulation, we
estimated a series of 10 regressions:

Yi = α + βi1D1 + βi2D2 + εi, i = 1...10.

The sample size for each regression was 100. Across the 10 regressions, we tested 20 null
hypotheses: β1 = 0 and β2 = 0. All null hypotheses are true by construction.

Column (1) of Table 3 shows that without any adjustment, the rejection rate exceeds
60 percent. However, applying a multiple-testing adjustment reduces the rejection rate to
approximately 4 percent, successfully controlling the FWER below the target threshold of 5
percent.

2.3 Linear and nonlinear combinations

wyoung enables researchers to perform multiple inference when testing hypotheses about
any linear or nonlinear combination of coefficients. To evaluate its effectiveness, we conducted
simulations testing both linear and nonlinear restrictions involving two regression coefficients.
Let µ be a ten-dimensional zero vector (0, 0, ..., 0)′. Let I be a 10× 10 identity matrix. The
data-generating process is:

7. Multiple restrictions (ten outcomes)

X1 ∼ N (µ, I)
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X2 ∼ N (µ, I)

e ∼ N (µ, I)

Y = 2X1 + 0.5X2 + e

We simulated 2,000 datasets using this data-generating process. In each simulation, we
estimated a series of 10 regressions:

Yi = α + βi1Xi1 + βi2Xi2 + εi, i = 1...10.

The sample size for each regression was 100. We separately tested the following two sets of
10 null hypotheses: (1) the linear restriction βi1− 4βi2 = 0; and (2) the nonlinear restriction
βi1βi2 − 1 = 0. Both these null hypotheses are true by construction.

The results, reported in Columns (2) and (3) of Table 3, show that rejection rates exceed
40 percent when no adjustment is applied. By contrast, the rejection rates for adjusted p-
values are approximately 5 percent for the linear restriction and 6 percent for the nonlinear
restriction, demonstrating that wyoung effectively controls the FWER in both scenarios.

2.4 Permutation

The simulations described above employed the bootstrapping algorithm outlined in Section
1.1. Next, we compare the performance of this algorithm with the permutation algorithm
presented in Section 1.2. Let µ denote a ten-dimensional zero vector (0, 0, ..., 0)′, and let
I denote a 10 × 10 identity matrix. We begin with the following normal data-generating
process:

8. Normal i.i.d. errors (ten outcomes)

e ∼ N (µ, I)

Y = e

We analyze two distinct treatment assignment processes. The first is simple random assign-
ment at the individual level, where each individual has an equal probability of 0.5 of being
assigned to the treatment group. The second is stratified random assignment, in which the
population is divided into 10 equally sized strata, and treatment is randomly assigned within
each stratum.

Next, we consider clustered random assignment, governed by the following data-generating
process:

9. Clustered random assignment (ten outcomes)

i = 1...100 clusters

j = 1...10 units per cluster

ηi ∼ N (µ, I)

eij ∼ N (µ, I)

Yij = ηi + eij
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Treatment is assigned at the cluster level using simple random assignment, with a 50 percent
probability of being assigned to the treatment group.

Table 4 reports rejection rates for all three scenarios. Without any adjustment, the
rejection rates are about 40 percent. Both the Bonferroni-Holm and Sidak-Holm methods
effectively control the FWER at approximately 5 percent, as expected in this setting where
outcomes are uncorrelated.The Westfall-Young correction achieves rejection rates between
4 and 6 percent when using bootstrapping and slightly tigher control, with rates between 4
and 5 percent, when using permutation. These results suggest that the choice between the
two methods does not substantially affect performance in this setting.

References
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Table 1: Family-wise rejection proportions at α = 0.05

(1) (2) (3) (4)

Adjustment method Normal errors Multiple
subgroups

Correlated
errors

Lognormal
errors

Unadjusted 0.398 0.387 0.685 0.577
Bonferroni-Holm 0.040 0.047 0.344 0.234
Sidak-Holm 0.040 0.051 0.347 0.237
Westfall-Young 0.041 0.045 0.513 0.058

Num. observations 100 100 100 100
Num. hypotheses 10 10 10 10
Hypotheses are true Y Y N Y
Notes: Table reports the proportion of 2,000 simulations where at least one null hypothesis in a family of 10
hypotheses was rejected. In the simulations reported in columns (1), (2), and (4), all hypotheses are true, so
lower rejection rates indicate better performance. In contrast, for the simulation reported in column (3), all
hypotheses are false, so higher rejection rates indicate better performance. The Westfall-Young adjustment
is applied using 1,000 bootstraps.

Table 2: Family-wise rejection proportions at α = 0.05, when the data generating process is
serially correlated

Adjustment method (1) (2) (3)

Unadjusted 0.652 0.401 0.401
Bonferroni-Holm 0.187 0.049 0.049
Sidak-Holm 0.188 0.049 0.049
Westfall-Young 0.191 0.498 0.046

Num. observations 1,000 1,000 1,000
Num. hypotheses 10 10 10
Model std. errors Homoskedastic Clustered Clustered
Cluster bootstrap N N Y
Notes: Table reports the proportion of 2,000 simulations where at least one null hypothesis in a family
of 10 hypotheses was rejected. The difference between columns (1) and (2) is the assumption about the
standard errors (homoskedastic or clustered). The difference between columns (2) and (3) is the method of
bootstrapping (resampling over individual observations versus clusters), which matters only for the Westfall-
Young adjustment. All null hypotheses are true, so lower rejection rates indicate better performance. Each
simulation generated 100 panels (clusters) with 10 time periods. The Westfall-Young adjustment is applied
using 1,000 bootstraps.
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Table 3: Family-wise rejection proportions at α = 0.05, when testing hypotheses with mul-
tiple regressors or restrictions

(1) (2) (3)

Adjustment method Multiple regressors Linear restriction Nonlinear restriction

Unadjusted 0.634 0.440 0.435
Bonferroni-Holm 0.043 0.052 0.064
Sidak-Holm 0.045 0.052 0.066
Westfall-Young 0.041 0.051 0.062

Num. observations 100 100 100
Num. hypotheses 20 10 10
Notes: Table reports the proportion of 2,000 simulations where at least one null hypothesis in the family
was rejected. All null hypotheses are true, so lower rejection rates indicate better performance. Section 2.2
describes the data-generating process used in column (1). Section 2.3 describes the data-generating process
used in columns (2) and (3). The Westfall-Young adjustment is applied using 1,000 bootstraps.

Table 4: Family-wise rejection proportions at α = 0.05, when treatment is randomized

(1) (2) (3)

Method of random assignment

Adjustment method Individual Stratified Clustered

Unadjusted 0.392 0.409 0.391
Bonferroni-Holm 0.051 0.045 0.045
Sidak-Holm 0.054 0.047 0.045
Westfall-Young (bootstrap) 0.053 0.064 0.043
Westfall-Young (permutation) 0.052 0.048 0.043

Num. observations 100 100 1,000
Num. hypotheses 10 10 10
Notes: Table reports the proportion of 2,000 simulations where at least one null hypothesis in the family was
rejected. All null hypotheses are true, so lower rejection rates indicate better performance. In column (1),
individuals are randomly assigned to treatment with a probability of 0.5. In column (2), assignment is strat-
ified into 10 equally sized strata. In column (3), treatment is assigned at the cluster level, with 100 clusters
of 10 observations each. The Westfall-Young adjustments are applied using 1,000 bootstraps/permutations.
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